【題目】通過學習銳角三角比,我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值是一一對應的,因此,兩條邊長的比值與角的大小之間可以相互轉(zhuǎn)化。類似的,可以在等腰三角形中建立邊角之間的聯(lián)系。我們定義:等腰三角形中底邊與腰的比叫做底角的鄰對(can).
如圖(1)在△中,,底角的鄰對記作,這時,容易知道一個角的大小與這個角的鄰對值也是一一對應的.根據(jù)上述角的鄰對的定義解下列問題:
(1)= ;
(2)如圖(2),在△中,,,,求△的周長
【答案】(1)can30°=;(2)△ABC的周長=.
【解析】
(1)過點A作AD⊥BC于點D,根據(jù)∠B=30°,可得出BD= AB,結(jié)合等腰三角形的性質(zhì)可得出BC= AB,繼而得出canB;
(2)過點A作AE⊥BC于點E,根據(jù)canB= ,設BC=8x,AB=5x,再由S△ABC=24,可得出x的值,繼而求出周長.
(1)(1)過點A作AD⊥BC于點D,
∵∠B=30°,
∴cos∠B= =,
∴BD= AB,
∵△ABC是等腰三角形,
∴BC=2BD=AB,
故can30°= =
(2)∵在△ABC中, canB ,∴
設
過點A作AE垂足為點E,
∵AB=AC ∴
∵ ∴
∴
∴△ABC的周長=.
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組請結(jié)合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得_______________;
(Ⅱ)解不等式②,得_______________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,與y軸交于點C對稱軸為直線x=1.直線y=﹣x+c與拋物線y=ax2+bx+c交于C、D兩點,D點在x軸下方且橫坐標小于3,則下列結(jié)論:
①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.
其中正確的有( 。
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了“創(chuàng)建文明城市,建設美麗家園”,我市某社區(qū)將轄區(qū)內(nèi)的一塊面積為1000m2的空地進行綠化,一部分種草,剩余部分栽花,設種草部分的面積為(m2),種草所需費用1(元)與(m2)的函數(shù)關(guān)系式為,其圖象如圖所示:栽花所需費用2(元)與x(m2)的函數(shù)關(guān)系式為2=﹣0.012﹣20+30000(0≤≤1000).
(1)請直接寫出k1、k2和b的值;
(2)設這塊1000m2空地的綠化總費用為W(元),請利用W與的函數(shù)關(guān)系式,求出綠化總費用W的最大值;
(3)若種草部分的面積不少于700m2,栽花部分的面積不少于100m2,請求出綠化總費用W的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2﹣2x+3.
(1)把函數(shù)關(guān)系式配成頂點式并求出圖象的頂點坐標和對稱軸.
(2)若圖象與x軸交點為A.B,與y軸交點為C,求A、B、C三點的坐標;
(3)在圖中畫出圖象.并求出△ABC面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BE平分∠ABC交AC于點E,過點E作ED∥BC交AB于點D.
(1)求證:AEBC=BDAC;
(2)如果=3,=2,DE=6,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸正半軸交于點A(3,0).以OA為邊在軸上方作正方形OABC,延長CB交拋物線于點D,再以BD為邊向上作正方形BDEF,則= ,點E的坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC三個頂點的坐標分別為(1,2),(-2,3),(-1,0),把它們的橫坐標和縱坐標都擴大到原來的2倍,得到點, , .下列說法正確的是( 。
A. △與△ABC是位似圖形,位似中心是點(1,0)
B. △與△ABC是位似圖形,位似中心是點(0,0)
C. △與△ABC是相似圖形,但不是位似圖形
D. △與△ABC不是相似圖形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com