【題目】設(shè)數(shù)列的前項(xiàng)和為 成等差數(shù)列。

(1證明為等比數(shù)列,并求數(shù)列的通項(xiàng);

(2)設(shè),且,證明。

(3)在(2)小問(wèn)的條件下,若對(duì)任意的,不等式恒成立,試求實(shí)數(shù)λ的取值范圍.

【答案】(1);(2)見(jiàn)解析;(3).

【解析】試題分析:當(dāng)時(shí),由 ,作差可得兩邊同時(shí)除以即可構(gòu)造新數(shù)列求解了;

(2)由(1)有,即可采用裂項(xiàng)相消的方法求和得即可證明

;

(3)恒成立時(shí),即)恒成立,令,討論求解即可.

試題解析:

(1)在

,得,①

,得,②

,③

則由①②③解得,

當(dāng)時(shí),由 ,得到

,則

是以為首項(xiàng), 為公比的等比數(shù)列,

,即

2,則

.

3)當(dāng)恒成立時(shí),即恒成立.

設(shè)),

當(dāng)時(shí), 恒成立,則滿足條件;

當(dāng)時(shí),由二次函數(shù)性質(zhì)知不恒成立;

當(dāng)時(shí),由于對(duì)稱軸 ,則上單調(diào)遞減,

恒成立,則滿足條件,

綜上所述,實(shí)數(shù)λ的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于空間直角坐標(biāo)系中的一點(diǎn),有下列說(shuō)法:

①點(diǎn)到坐標(biāo)原點(diǎn)的距離為

的中點(diǎn)坐標(biāo)為;

③點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)為;

④點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為;

⑤點(diǎn)關(guān)于坐標(biāo)平面對(duì)稱的點(diǎn)的坐標(biāo)為.

其中正確的個(gè)數(shù)是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,底面為矩形,底面,,上一點(diǎn),且平面.

(1)求的長(zhǎng)度;

(2)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線 上有一點(diǎn)列過(guò)點(diǎn)x軸上的射影是,123+…+n=2n+1n-2.n∈N*)

(1)求數(shù)列{}的通項(xiàng)公式

(2)設(shè)四邊形 的面積是,求

(3)在(2)條件下,求證 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且.點(diǎn)

是棱的中點(diǎn),平面與棱交于點(diǎn).

1求證:;

2,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形中,,沿將梯形折起,使得平面⊥平面.

(1)證明:;

(2)求三棱錐的體積;

(3)求直線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 “中國(guó)式過(guò)馬路”是網(wǎng)友對(duì)部分中國(guó)人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就以走了,和紅綠燈無(wú)關(guān).”出現(xiàn)這種現(xiàn)象是大家受法不責(zé)眾的“從眾”心理影響,從而不顧及交通安全.某校對(duì)全校學(xué)生過(guò)馬路方式進(jìn)行調(diào)查,在所有參與調(diào)查的人中,“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”人數(shù)如表所示:

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

800

450

200

女生

100

150

300

在所有參與調(diào)查的人中,用分層抽樣的方法抽取n人,已知“跟從別人闖紅燈”的人抽取45 人,求n的值;

在“帶頭闖紅燈”的人中,將男生的200人編號(hào)為1,2,…,200;將女生的300人編號(hào)為201,202,…,500,用系統(tǒng)抽樣的方法抽取4人參加“文明交通”宣傳活動(dòng),若抽取的第一個(gè)人的編號(hào)為100,把抽取的4人看成一個(gè)總體,從這4人中任選取2人,求這兩人均是女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇

函數(shù),且相鄰兩對(duì)稱軸間的距離為.

當(dāng)時(shí),求的單調(diào)遞減區(qū)間;

將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),

得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,利用簡(jiǎn)單隨機(jī)抽樣的方法在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100

(1)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來(lái)了解該校大學(xué)新生的飲食習(xí)慣,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案