如圖,AB為⊙O的直徑,D是⊙O上的一點(diǎn),過O點(diǎn)作AB的垂線交AD于點(diǎn)E,交BD的延長線于點(diǎn)C,F(xiàn)為CE上一點(diǎn),且FD=FE.
(1)請(qǐng)?zhí)骄縁D與⊙O的位置關(guān)系,并說明理由;
(2)如果EF=3cm,求CF的長.

解:(1)FD與⊙O相切.
理由:連接OD;
∵FE=FD,
∴∠FED=∠FDE;
又∵OA=OD,
∴∠OAD=∠ODA,
∵∠OEA+∠OAE=90°,∠FED=∠AEO,
∴∠ODE+∠FDE=90°,
∴FD與⊙O相切.

(2)∵FD=EF,
∴∠FED=∠FDE,
∵∠C+∠CED=90°,∠CDF+∠FDE=90°,
∴∠C=∠CDF,
∴FC=DF,
∴CF的長為3cm.
分析:(1)連接圓心和切點(diǎn),利用OC⊥AB可證得∠ODF=90°,從而得到其位置關(guān)系;
(2)利用FD=EF得出∠FED=∠FDE,由∠C+∠CED=90°,∠CDF+∠FDE=90°,即可得出∠C=∠CDF,則FC=DF,得出答案即可.
點(diǎn)評(píng):此題主要考查了切線的判定和等角對(duì)等邊以及互余等知識(shí),求直線和圓的位置關(guān)系,首先要猜想是相切,那么應(yīng)連接圓心和切點(diǎn),證半徑和直線所夾的角是90°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點(diǎn)C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測(cè)試數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習(xí)冊(cè)答案