如圖,△ABC內(nèi)接于⊙O,弦AD⊥AB交BC于點(diǎn)E,過(guò)點(diǎn)B作⊙O的切線交DA的延長(zhǎng)線于點(diǎn)F,且∠ABF=∠ABC.
(1)求證:AB=AC;
(2)若AD=4,cos∠ABF=,求DE的長(zhǎng).
【答案】分析:(1)由BF是⊙O的切線,利用弦切角定理,可得∠3=∠C,又由∠ABF=∠ABC,可證得∠2=∠C,即可得AB=AC;
(2)首先連接BD,在Rt△ABD中,解直角三角形求出AB的長(zhǎng)度;然后在Rt△ABE中,解直角三角形求出AE的長(zhǎng)度;最后利用DE=AD-AE求得結(jié)果.
解答:(1)證明:∵BF是⊙O的切線,
∴∠3=∠C,
∵∠ABF=∠ABC,
即∠3=∠2,
∴∠2=∠C,
∴AB=AC;

(2)解:如圖,連接BD,在Rt△ADB中,∠BAD=90°,
∵cos∠ADB=,∴BD====5,
∴AB=3.
在Rt△ABE中,∠BAE=90°,
∵cos∠ABE=,∴BE===,
∴AE==
∴DE=AD-AE=4-=
點(diǎn)評(píng):此題考查了切線的性質(zhì)、等腰三角形的判定與性質(zhì)、勾股定理以及三角函數(shù)等知識(shí).此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說(shuō)明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊(cè)答案