【題目】如圖,在四邊形ABCD中,∠BCD是鈍角,ABAD,BD平分∠ABC.CD3,BD2,sinDBC,求對(duì)角線AC的長(zhǎng).

【答案】AC2.

【解析】試題過點(diǎn)DDEBCBC的延長(zhǎng)線于點(diǎn)E,則∠E90°,在RtBDE中,由sin∠DBCBD2,可得DE、BE的長(zhǎng),在RtCDE中,由勾股定理可得CE的長(zhǎng),從而可得BCCD, 再由BD平分∠ABC,可推導(dǎo)得到ABCD,同理ADBC,從而得到四邊形ABCD是菱形,然后再利用菱形的性質(zhì)及勾股定理即可求得AC的長(zhǎng)

試題解析BCBC的延長(zhǎng)線于點(diǎn)E,則∠E90°

∵在RtBDE中,sinDBCBD2,DE2,

BE 4,

∵在RtCDE中,CD3,DE2,CE 1,

BCBECE3BCCD,∴∠CBDCDB,

BD平分∠ABC,∴∠ABDCBD,∴∠ABDCDBABCD,

同理ADBC∴四邊形ABCD是菱形,

設(shè)ACBDO,則ACBD,AOCOACBODOBD ,

OC ,AC2OC2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,DBC邊上一點(diǎn),AC=2,CD=1,設(shè)∠CAD=α

(1)試寫出α的四個(gè)三角函數(shù)值;

(2)若∠B=α,求BD的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2bxc(a≠0)的圖象如圖所示,則下列結(jié)論中正確的是(   )

A. c>-1 B. b>0 C. 2ab ≠0 D. 9a2c>3b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BEAD交于點(diǎn)F

⑴求證:ΔABFΔEDF;

⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)FBC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2,以BC為邊向正方形內(nèi)作等邊△BCE,連接AE、DE.

(1)請(qǐng)直接寫出∠AEB的度數(shù),∠AEB=   

(2)將△AED沿直線AD向上翻折,得△AFD.求證:四邊形AEDF是菱形;

(3)連接EF,交AD于點(diǎn) O,試求EF的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點(diǎn)A;

(2)若AEBC,BC=2,AC=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).

(1)若ABCA1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱圖形,畫出A1B1C1;

(2)將ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的AB2C2;

(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到點(diǎn)B1與點(diǎn)C1距離之和最小,請(qǐng)直接寫出P B1+ P C1的最小值為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD內(nèi)有一點(diǎn)P,若PA=1,PB=2,PC=3.

(1)畫出△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到的△CBE;

(2)∠APB度數(shù);

(3)求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=4 cm,BC=6 cm,D是BC的中點(diǎn),以點(diǎn)D為圓心作一個(gè)半徑為3 cm的圓,則下列說法正確的是(  )

A. 點(diǎn)A在⊙D外 B. 點(diǎn)B在⊙D內(nèi) C. 點(diǎn)C在⊙D上 D. 無法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案