精英家教網 > 初中數學 > 題目詳情
19、如圖,以△ABC三邊為邊在BC同側作三個等邊△ABD、△BCE、△ACF.
請回答下列問題:
(1)求證:四邊形ADEF是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形ADEF是矩形.
分析:1、本題可根據三角形全等證得DE=AF,AD=EF,即可知四邊形ADEF是平行四邊形
2、要使四邊形ADEF是矩形,必須讓∠FAD=90°,則∠BAC=360°-90°-60°-60°=150°
解答:證明:(1)∵等邊△ABD、△BCE、△ACF,
∴DB=AB,BE=BC.
又∠DBE=60°-∠EBA,
∠ABC=60°-∠EBA,
∴∠DBE=∠ABC.
∴△DBE≌△CBA.
∴DE=AC.
又∵AC=AF,
∴AF=DE.
同理可證:△ABC≌△FCE,證得EF=AD.
∴四邊形ADEF是平行四邊形.

(2)∵四邊形ADEF是矩形,
∴∠DAF=90°.
又∵等邊△ABD、△BCE、△ACF,
∴∠DAB=∠FAC=60°.
∴∠BAC=360-∠DAF-∠FAC-∠DAB=150°.
當△ABC滿足∠BAC=150°時,四邊形ADEF是矩形.
點評:此題主要考查了等邊三角形的性質和平行四邊形的判定.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

24、(1)如圖,以△ABC三邊向外分別作等邊△ACD、△ABE、△BCF,判斷四邊形ADFE的形狀;
(2)在(1)中,是否存在平行四邊形ADFE?若存在,寫出△ABC應滿足的條件;若不存在,請說明理由;
(3)△ABC滿足什么條件時,四邊形ADFE是矩形?
(4)△ABC滿足什么條件時,四邊形ADFE是菱形?
(5)△ABC滿足什么條件時,四邊形ADFE是正方形?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,以△ABC三邊為邊,分別作三個等邊三角形,即△ABD、△BCE、△ACF.
(1)求證:四邊形ADEF是平行四邊形;
(2)當△ABC滿足什么條件時,平行四邊形ADEF是菱形?請說明理由.
(3)當△ABC滿足什么條件時,平行四邊形ADEF是正方形?不必說出理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,以△ABC三邊為邊在BC的同一側分別作3個等邊三角形,即△ABD、△BCE、△ACF.
(1)將△CBA繞著點C旋轉,可以與哪一個三角形重合,以及旋轉的度數(直接寫答案);
(2)四邊形AFED一定是平行四邊形嗎?如果是,請說明理由;
(3)當△ABC滿足什么條件時,四邊形AFED一定是菱形.( 直接寫答案,不必說明理由)

查看答案和解析>>

科目:初中數學 來源:2013屆江蘇靖江市八年級上學期期末考試數學試卷(解析版) 題型:解答題

如圖,以△ABC三邊為邊在BC的同一側分別作3個等邊三角形,即△ABD、△BCE、△ACF .

(1)將△CBA繞著點C旋轉,可以與哪一個三角形重合,以及旋轉的度數(直接寫答案);

(2)四邊形AFED一定是平行四邊形嗎?如果是,請說明理由;

(3)當△ABC滿足什么條件時,四邊形AFED一定是菱形.( 直接寫答案,不必說明理由)

 

查看答案和解析>>

同步練習冊答案