(2009•梅州一模)方程x2-2x+2=0的解的情況為(  )
分析:判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了.
解答:解:∵a=1,b=-2,c=2,
∴△=b2-4ac=(-2)2-4×1×2=-4<0,
所以方程x2-2x+2=0沒有實數(shù)根.
故選A.
點評:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時,方程有兩個不相等的實數(shù)根;當(dāng)△=0時,方程有兩個相等的實數(shù)根;當(dāng)△<0時,方程沒有實數(shù)根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)盒中有10張獎券,其中2張是有獎的,從中抽取1張,中獎的概率為
1
5
1
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如果x1、x2是一元二次方程x2-6x-2=0的兩個根,那么x1+x2的值是
6
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)一個函數(shù),當(dāng)x>0時,它的函數(shù)值隨自變量x的增大而減小,這個函數(shù)可以是
y=
1
x
(y=-x,y=-x2,答案不唯一)
y=
1
x
(y=-x,y=-x2,答案不唯一)
(寫出滿足條件的一個函數(shù)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,D、E分別是AB、AC的中點,將△ABC沿線段DE折疊,使點A落在點F處,若S△DEF=4cm2,則梯形BDEC的面積為
12
12
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,AB∥CD,∠BAC與∠DCA的平分線相交于點P.若PE⊥AC于E,且PE=3,則AB與CD之間的距離是
6
6

查看答案和解析>>

同步練習(xí)冊答案