如圖,在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點C,且AD⊥MN于點D,BE⊥MN于點E,BE=
12
AD=4,求線段DE的長.
分析:先證明∠BCE=∠CAD,再證明△ADC≌△CEB,可得到AD=CE,DC=EB,等量代換,可得出DE=AD+BE.
解答:解:∵∠ACB=90°,AC=BC,
∴∠ACD+∠BCE=90°,
又∵AD⊥MN,BE⊥MN,
∴∠ADC=∠CEB=90°,而∠ACD+∠DAC=90°,
∴∠BCE=∠CAD.
在△ADC和△CEB中,
∠BCE=∠DAC
∠ADC=∠CEB
AC=BC
,
∴△ADC≌△CEB(AAS).
∴AD=CE,DC=EB.
又∵DE=DC+CE,
∴DE=EB+AD=4+8=12,即DE=12.
點評:本題考查三角形全等的判定與性質(zhì),判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.證明兩線段的和等于一條線段常常借助三角形全等來證明,要注意運用這種方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案