【題目】若三個非零實數(shù),,滿足:只要其中一個數(shù)的倒數(shù)等于另外兩個數(shù)的倒數(shù)的和,則稱這三個實數(shù),,構成“和諧三組數(shù)”.
(1)實數(shù)1,2,3可以構成“和諧三組數(shù)”嗎?請說明理由;
(2)若,,三點均在函數(shù)(為常數(shù),)的圖象上,且這三點的縱坐標,,構成“和諧三組數(shù)”,求實數(shù)的值;
(3)若直線與軸交于點,與拋物線交于,兩點.
①求證:,,三點的橫坐標,,構成“和諧三組數(shù)”;
②若,,求點與原點的距離的取值范圍.
【答案】(1)不能;(2)t的值為﹣4、﹣2或2;(3)①證明見解析;②≤OP≤且OP≠1.
【解析】
試題(1)由和諧三組數(shù)的定義進行驗證即可;
(2)把M、N、R三點的坐標分別代入反比例函數(shù)解析式,可用t和k分別表示出y1、y2、y3,再由和諧三組數(shù)的定義可得到關于t的方程,可求得t的值;
(3)①由直線解析式可求得x1=﹣,聯(lián)立直線和拋物線解析式消去y,利用一元二次方程根與系數(shù)的關系可求得,,再利用和諧三數(shù)組的定義證明即可;②由條件可得到a+b+c=0,可得c=﹣(a+b),由a>2b>3c可求得的取值范圍,令m=,利用兩點間距離公式可得到OP2關于m的二次函數(shù),利用二次函數(shù)的性質可求得OP2的取值范圍,從而可求得OP的取值范圍.
試題解析:(1)不能,理由如下:
∵1、2、3的倒數(shù)分別為1、、,∴≠1,1+≠,1+≠,∴實數(shù)1,2,3不可以構成“和諧三組數(shù)”;
(2)∵M(t,y1),N(t+1,y2),R(t+3,y3)三點均在函數(shù)(k為常數(shù),k≠0)的圖象上,∴y1、y2、y3均不為0,且y1=,y2=,y3=,∴=, =, =,∵y1,y2,y3構成“和諧三組數(shù)”,∴有以下三種情況:
當=+時,則=+,即t=t+1+t+3,解得t=﹣4;
當=+時,則=+,即t+1=t+t+3,解得t=﹣2;
當=+時,則=+,即t+3=t+t+1,解得t=2;
∴t的值為﹣4、﹣2或2;
(3)①∵a、b、c均不為0,∴x1,x2,x3都不為0,∵直線y=2bx+2c(bc≠0)與x軸交于點A(x1,0),∴0=2bx1+2c,解得x1=﹣,聯(lián)立直線與拋物線解析式,消去y可得2bx+2c=ax2+3bx+3c,即ax2+bx+c=0,∵直線與拋物線交與B(x2,y2),C(x3,y3)兩點,∴x2、x3是方程ax2+bx+c=0的兩根,∴,,∴= = =﹣=,∴x1,x2,x3構成“和諧三組數(shù)”;
②∵x2=1,∴a+b+c=0,∴c=﹣a﹣b,∵a>2b>3c,∴a>2b>3(﹣a﹣b),且a>0,整理可得,解得﹣<<,∵P(,),∴OP2=()2+()2=()2+()2=2()2+2+1=2(+)2+,令m=,則﹣<m<且m≠0,且OP2=2(m+)2+,∵2>0,∴當﹣<m<﹣時,OP2隨m的增大而減小,當m=﹣時,OP2有最大值,當m=﹣時,OP2有最小值,當﹣<m<時,OP2隨m的增大而增大,當m=﹣時,OP2有最小值,當m=時,OP2有最大值,∴≤OP2≤且OP2≠1,∵P到原點的距離為非負數(shù),∴≤OP≤且OP≠1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于(-1,0),(3,0)兩點,則下列說法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)為拋物線上三點,且-1<x1<x2<1,x3>3,則y2<y1<y3,其中正確的結論是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質,易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在三角形紙片ABC中,AB=6,BC=8,AC=4.沿虛線剪下的涂色部分的三角形與△ABC相似的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(操作體驗)
如圖①,已知線段AB和直線l,用直尺和圓規(guī)在l上作出所有的點P,使得∠APB=30°,如圖②,小明的作圖方法如下:
第一步:分別以點A,B為圓心,AB長為半徑作弧,兩弧在AB上方交于點O;
第二步:連接OA,OB;
第三步:以O為圓心,OA長為半徑作⊙O,交l于P1,P2;所以圖中P1,P2即為所求的點.
(1)在圖②中,連接P1A,P1B,試說明∠AP1B=30°;
(方法遷移)
(2)已知矩形ABCD,如圖③,BC=2,AB=m.
①若P為AD邊上的點,且滿足∠BPC=60°的點P恰有1個,求m的值.
②當m=4時,若P為矩形ABCD外一點,且滿足∠BPC=60°,求AP長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖①是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖①的底邊剪去一塊邊長的 的等邊三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉等邊三角形紙板邊長的 )后,得圖③,④,…,記第n(n≥3)塊紙板的周長為Pn,則Pn-Pn-1=_________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 正方形ABCD與正五邊形EFGHM的邊長相等,初始如圖所示,將正方形繞點F順時針旋轉使得BC與FG重合,再將正方形繞點G順時針旋轉使得CD與GH重合…按這樣的方式將正方形依次繞點H、M、E旋轉后,正方形中與EF重合的是( 。
A. ABB. BCC. CDD. DA
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/秒的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/秒的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點D、E運動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應的t值,如果不能,說明理由;
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB為邊,在△OAB
外作等邊△OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求證:四邊形ABCE是平行四邊形;
(2)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com