【題目】解不等式組 ,把不等式組的解集在數(shù)軸上表示出來,并求出不等式組的整數(shù)解的和.
【答案】解:解不等式①得:x≤1,解不等式②,得x-1,
∴原不等式組的解集是:-1<x≤1,
∴其解集在數(shù)軸上表示如圖所示.
∴不等式組的整數(shù)解由0,1.
∴原不等式組的所有整數(shù)解的和是0+1=1.
【解析】先分別求出每一個不等式的解集,然后再確定不等式組的解集,即可得.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解一元一次不等式組的解法的相關(guān)知識,掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 ),以及對一元一次不等式組的整數(shù)解的理解,了解使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某款籃球架的示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點(diǎn)到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.26,sin75°≈0.97,tan75°≈3.73, ≈1.73)( )
A.3.04
B.3.05
C.3.06
D.4.40
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點(diǎn)C,將一個三角板的直角頂點(diǎn)與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點(diǎn)D,E.
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA垂直時(如圖①),易證:OD+OE= OC;
當(dāng)三角板繞點(diǎn)C旋轉(zhuǎn)到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結(jié)論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關(guān)系?請寫出你的猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某探測隊在地面A、B兩處均探測出建筑物下方C處有生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米.參考數(shù)據(jù):sin25°≈0.4,cos25°≈0.9,tan25°≈0.5, ≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.動點(diǎn)M,N從點(diǎn)C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點(diǎn)A,B移動,同時動點(diǎn)P從點(diǎn)B出發(fā),以每秒2cm的速度沿BA向終點(diǎn)A移動,連接PM,PN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當(dāng)t為何值時,以A,P,M為頂點(diǎn)的三角形與△ABC相似?
(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC邊上的一點(diǎn),∠B=50°,∠BAD=30°,將△ABD沿AD折疊得到△AED,AE與BC交于點(diǎn)F.
(1)填空:∠AFC=______度;
(2)求∠EDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個鈍角△ABC(其中∠ABC=120°)繞
點(diǎn)B順時針旋轉(zhuǎn)得△A1BC1,使得C點(diǎn)落在AB的延長線上的點(diǎn)C1處,連結(jié)AA1.
(1)寫出旋轉(zhuǎn)角的度數(shù);
(2)求證:∠A1AC=∠C1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,4),且滿足(a+4)2+=0,過C作CB⊥x軸于B。
(1)求三角形ABC的面積;
(2)如圖2,若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);
(3)在y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,AC=AD,M,N分別為AC,CD的中點(diǎn),連結(jié)BM,MN.
(1)求證BM=MN;
(2)若∠BCN=135°,求∠BMN的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com