已知:如圖,在△ABC中,AB=AC,∠BAC=30°.點(diǎn)D為△ABC內(nèi)一點(diǎn),
且DB=DC,∠DCB=30°.點(diǎn)E為BD延長線上一點(diǎn),且AE=AB

【小題1】求∠ADE的度數(shù)
【小題2】若點(diǎn)M在DE上,且DM=DA,
求證:ME=DC.
p;【答案】
【小題1】60°
【小題2】解析:
(1)如圖4.

∵△ABC中,AB=AC,∠BAC=30°,
∴∠ABC=∠ACB==75°.
∵DB=DC,∠DCB=30°,
∴∠DBC=∠DCB=30°.
∴∠1=∠ABC-∠DBC=75°-30°=45°.
∵AB=AC,DB=DC,
∴AD所在直線垂直平分BC.
∴AD平分∠BAC.
∴∠2=∠BAC==15°.   ∴∠ADE=∠1+∠2 =45°+15°=60°. 
證明:(2)證法一:連接AM,取BE的中點(diǎn)N,連接AN.(如圖5)

∵△ADM中,DM=DA,∠ADE=60°,
∴△ADM為等邊三角形.   ∵△ABE中,AB=AE,N為BE的中點(diǎn),
∴BN=NE,且AN⊥BE.
∴DN=NM.  
∴BN-DN =NE-NM,
即 BD=ME.
∵DB=DC,
∴ME = DC.
證法二:連接AM.(如圖6)

∵△ADM中,DM=DA,∠ADE =60°,
∴△ADM為等邊三角形.
∴∠3=60°.
∵AE=AB,
∴∠E=∠1=45°.
∴∠4=∠3-∠E=60°-45°=15°.
∴∠2=∠4.
在△ABD和△AEM中,
             ∠1 =∠E,
AB=AE,
∠2 =∠4,
∴△ABD≌△AEM.  
∴BD =EM.
∵DB = DC,
∴ME = DC.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

34、已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點(diǎn)O為圓心,過A,D兩點(diǎn)作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點(diǎn)為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚(yáng)州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點(diǎn)D和點(diǎn)E.
(1)作出邊AC的垂直平分線DE;
(2)當(dāng)AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點(diǎn)E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:專項(xiàng)題 題型:證明題

已知:如圖,在AB、AC上各取一點(diǎn),E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習(xí)冊答案