【題目】下列識(shí)別圖形不正確的是(
A.有一個(gè)角是直角的平行四邊形是矩形
B.有三個(gè)角是直角的四邊形是矩形
C.對(duì)角線相等的四邊形是矩形
D.對(duì)角線互相平分且相等的四邊形是矩形

【答案】C
【解析】解:A、有一個(gè)角是直角的平行四邊形是矩形,正確;
B、有三個(gè)角是直角的四邊形是矩形,正確;
C、對(duì)角線相等的四邊形不一定是矩形,對(duì)角線相等的平行四邊形才是矩形,錯(cuò)誤;
D、對(duì)角線互相平分且相等的四邊形是矩形,正確.
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解矩形的判定方法(有一個(gè)角是直角的平行四邊形叫做矩形;有三個(gè)角是直角的四邊形是矩形;兩條對(duì)角線相等的平行四邊形是矩形).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC與DEF都是等腰直角三角形,ACB=EDF=90°,且點(diǎn)D在AB邊上,AB、EF的中點(diǎn)均為O,連結(jié)BF、CD、CO,顯然點(diǎn)C、F、O在同一條直線上,可以證明BOF≌△COD,則BF=CD

解決問題

1將圖中的RtDEF繞點(diǎn)O旋轉(zhuǎn)得到圖,猜想此時(shí)線段BF與CD的數(shù)量關(guān)系,并證明你的結(jié)論;

2如圖,若ABC與DEF都是等邊三角形,AB、EF的中點(diǎn)均為O,上述1中的結(jié)論仍然成立嗎?如果成立,請(qǐng)說明理由;如不成立,請(qǐng)求出BF與CD之間的數(shù)量關(guān)系;

3如圖,若ABC與DEF都是等腰三角形,AB、EF的中點(diǎn)均為0,且頂角ACB=EDF=α,請(qǐng)直接寫出的值用含α的式子表示出來

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系;

(2)如圖2,過點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;

(3)如圖3,在(2)問的條件下,點(diǎn)E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC的邊長是2,D、E分別為AB、AC的中點(diǎn),延長BC至點(diǎn)F,使CF= BC,連結(jié)CD和EF.
(Ⅰ)求證:四邊形CDEF是平行四邊形;
(Ⅱ)求四邊形BDEF的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一家面臨倒閉的企業(yè)在“調(diào)整產(chǎn)業(yè)結(jié)構(gòu),轉(zhuǎn)變經(jīng)營機(jī)制”的改革后,扭虧為盈. 下表是該企業(yè)2015年8~12月、2016年第一季度的月利潤統(tǒng)計(jì)表:

根據(jù)以上信息,解答下列問題:
(1)2015年8月至2016年1月該企業(yè)利潤的月平均利潤為萬元,月利潤的中位數(shù)為萬元;
(2)已知該企業(yè)2016年2、3月份的月利潤的平均增長率相同,求這個(gè)平均增長率和2月份的月利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)運(yùn)算程序的示意圖,若開始輸入的x值為81,我們看到第一次輸出的結(jié)果為27,第二次輸出的結(jié)果為9,…,第2017次輸出的結(jié)果為( )

A.1
B.3
C.9
D.27

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正比例函數(shù)y=mx的圖象經(jīng)過點(diǎn)A(m,4),且y的值隨x值的增大而減小,則m=(  )

A. 2 B. -2 C. 4 D. -4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上A、B兩點(diǎn)間的距離是指(
A.經(jīng)過A,B兩點(diǎn)的直線
B.射線AB
C.A,B兩點(diǎn)間的線段
D.A,B兩點(diǎn)間線段長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家發(fā)現(xiàn):學(xué)生對(duì)提出概念的接受能力y與提出概念的時(shí)間xmin)之間滿足二次函數(shù)關(guān)系y=﹣0.1x2+2.6x+43.則使學(xué)生對(duì)概念的接受能力最大.則提出概念的時(shí)間應(yīng)為( 。

A. 13minB. 26minC. 52minD. 59.9min

查看答案和解析>>

同步練習(xí)冊答案