將邊長OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在x軸和y軸上.在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E、F,連接EF,將△EOF沿EF折疊,使點(diǎn)O落在AB邊上的點(diǎn)D處.

(1)如圖,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),OE的長度為________;

(2)如圖,當(dāng)點(diǎn)F與點(diǎn)C不重合時(shí),過點(diǎn)D作DG∥y軸交EF于點(diǎn)T,交OC于點(diǎn)G.

求證:EO=DT;

(3)在(2)的條件下,設(shè)T(x,y),寫出y與x之間的函數(shù)關(guān)系式為________,自變量x的取值范圍是________;

(4)如圖,將矩形OABC變?yōu)槠叫兴倪呅,放在平面直角坐?biāo)系中,且OC=10,OC邊上的高等于8,點(diǎn)F與點(diǎn)C不重合,過點(diǎn)D作DG∥y軸交EF于點(diǎn)T,交OC于點(diǎn)G,求出這時(shí)T(x,y)的坐標(biāo)y與x之間的函數(shù)關(guān)系式(不求自變量x的取值范圍).

答案:
解析:

  (1)5. 1分

  (2)證明:∵△EDF是由△EFO折疊得到的,∴∠1=∠2.

  又∵DG∥y軸,∠1=∠3.

  ∴∠2=∠3.∴DE=DT.

  ∵DE=EO,∴EO=DT. 2分

  (3). 3分

  4﹤x≤8. 4分

  (4)解:連接OT

  由折疊性質(zhì)可得OTDT

  ∵DG=8,TGy

  ∴OTDT=8-y

  ∵DGy軸,∴DGx軸.

  在Rt△OTG中,∵OT2=OG2+TG2,

  ∴(8-y)2=x2+y2

  ∴. 7分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰市要塞中學(xué)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點(diǎn)B作BD⊥BC,交OA于點(diǎn)D.將∠DBC繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于點(diǎn)E和F.

(1)求經(jīng)過A、B、C三點(diǎn)的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點(diǎn)時(shí),求CF的長;
(3)在拋物線的對(duì)稱軸上取兩點(diǎn)P、Q(點(diǎn)Q在點(diǎn)P的上方),且PQ=1,要使四邊形BCPQ的周長最小,請(qǐng)直接寫出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河北省保定市易縣九年級(jí)第二次模擬檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:如圖1,△OAB是邊長為2的等邊三角形,OAx軸上,點(diǎn)B在第一象限內(nèi);△OCA是一個(gè)等腰三角形,OCAC,頂點(diǎn)C在第四象限,∠C=120°.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、O兩點(diǎn)同時(shí)出發(fā),點(diǎn)Q以每秒1個(gè)單位的速度沿OC向點(diǎn)C運(yùn)動(dòng),點(diǎn)P以每秒3個(gè)單位的速度沿AOB運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨即停止.

(1)求在運(yùn)動(dòng)過程中形成的△OPQ的面積S與運(yùn)動(dòng)的時(shí)間t之間的函數(shù)關(guān)系,并寫出自變量t的取值范圍;
(2)在OA上(點(diǎn)O、A除外)存在點(diǎn)D,使得△OCD為等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)D的坐標(biāo);
(3)如圖2,現(xiàn)有∠MCN=60°,其兩邊分別與OB、AB交于點(diǎn)M、N,連接MN.將∠MCN繞著C點(diǎn)旋轉(zhuǎn)(0°<旋轉(zhuǎn)角<60°),使得M、N始終在邊OB和邊AB上.試判斷在這一過程中,△BMN的周長是否發(fā)生變化?若沒有變化,請(qǐng)求出其周長;若發(fā)生變化,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省廣州市南沙區(qū)中考一模數(shù)學(xué)試卷(帶解析) 題型:解答題

將邊長OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在軸和y軸上.在OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊。

(1)如圖①,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為           ;
(2)如圖②,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過點(diǎn)EEG軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EHCH;
(3)在(2)的條件下,設(shè)Hmn),寫出mn之間的關(guān)系式                           ;
(4)如圖③,將矩形OABC變?yōu)檎叫危?i>OC=10,當(dāng)點(diǎn)EAO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長CDAB于點(diǎn)T,求此時(shí)AT的長度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年廣東省廣州市南沙區(qū)中考一模數(shù)學(xué)試卷(解析版) 題型:解答題

將邊長OA=8,OC=10的矩形OABC放在平面直角坐標(biāo)系中,頂點(diǎn)O為原點(diǎn),頂點(diǎn)C、A分別在軸和y軸上.在OA邊上選取適當(dāng)?shù)狞c(diǎn)E,連接CE,將△EOC沿CE折疊。

(1)如圖①,當(dāng)點(diǎn)O落在AB邊上的點(diǎn)D處時(shí),點(diǎn)E的坐標(biāo)為           ;

(2)如圖②,當(dāng)點(diǎn)O落在矩形OABC內(nèi)部的點(diǎn)D處時(shí),過點(diǎn)EEG軸交CD于點(diǎn)H,交BC于點(diǎn)G.求證:EHCH;

(3)在(2)的條件下,設(shè)Hm,n),寫出mn之間的關(guān)系式                           ;

(4)如圖③,將矩形OABC變?yōu)檎叫危?i>OC=10,當(dāng)點(diǎn)EAO中點(diǎn)時(shí),點(diǎn)O落在正方形OABC內(nèi)部的點(diǎn)D處,延長CDAB于點(diǎn)T,求此時(shí)AT的長度。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案