【題目】受國內(nèi)外復(fù)雜多變的經(jīng)濟環(huán)境影響,去年1至7月,原材料價格一路攀升,義烏市某服裝廠每件衣服原材料的成本y1(元)與月份x(1≤x≤7,且x為整數(shù))之間的函數(shù)關(guān)系如下表:
月份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
成本(元/件) | 56 | 58 | 60 | 62 | 64 | 66 | 68 |
8至12月,隨著經(jīng)濟環(huán)境的好轉(zhuǎn),原材料價格的漲勢趨緩,每件原材料成本y2(元)與月份x的函數(shù)關(guān)系式為y2=x+62(8≤x≤12,且x為整數(shù)).
(1)請觀察表格中的數(shù)據(jù),用學(xué)過的函數(shù)相關(guān)知識求y1與x的函數(shù)關(guān)系式.
(2)若去年該衣服每件的出廠價為100元,生產(chǎn)每件衣服的其他成本為8元,該衣服在1至7月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤7,且x為整數(shù)); 8至12月的銷售量p2(萬件)與月份x滿足關(guān)系式p2=﹣0.1x+3(8≤x≤12,且x為整數(shù)),該廠去年哪個月利潤最大?并求出最大利潤.
【答案】
(1)解:由表格中數(shù)據(jù)可猜測,y1是x的一次函數(shù).
設(shè)y1=kx+b
則 解得:
∴y1=2x+54,
經(jīng)檢驗其它各點都符合該解析式,
∴y1=2x+54(1≤x≤7,且x為整數(shù))
(2)解:設(shè)去年第x月的利潤為w萬元.
當(dāng)1≤x≤7,且x為整數(shù)時,
w=p1(100﹣8﹣y1)=(0.1x+1.1)(92﹣2x﹣54)=﹣0.2x2+1.6x+41.8=﹣0.2(x﹣4)2+45,
∴當(dāng)x=4時,w最大=45萬元;
當(dāng)8≤x≤12,且x為整數(shù)時,
w=p2(100﹣8﹣y2)=(﹣0.1x+3)(92﹣x﹣62)=0.1x2﹣6x+90=0.1(x﹣30)2,
∴當(dāng)x=8時,w最大=48.4萬元.
∴該廠去年8月利潤最大,最大利潤為48.4萬元
【解析】(1)由表格中數(shù)據(jù)可猜測,y1是x的一次函數(shù).把表格(1)中任意兩組數(shù)據(jù)代入直線解析式可得y1的解析式.(2)分情況探討得:1≤x≤7時,利潤=p1×(售價﹣各種成本);80≤x≤12時,利潤=p2×(售價﹣各種成本);并求得相應(yīng)的最大利潤即.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙P與y軸相切,交直線y=x于A,B兩點,已知圓心P的坐標為(2,a)(a>2),AB=2 ,則a的值為( )
A.4
B.2+
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點P的坐標為(a,b),點P的“變換點”P`的坐標定義如下:當(dāng)時,P`點坐標為(a,-b);當(dāng)時,P`點坐標為(b,-a)。線段l:上所有點按上述“變換點”組成一個新的圖形,若直線與組成的新的圖形有兩個交點,則k的取值范圍是( )
A. B. 或 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填寫理由:如圖所示
∵DF∥AC(已知),
∴∠D+∠DBC=180°.( )
∵∠C=∠D(已知),
∴∠C+ =180°.( )
∴DB∥EC( )
∴∠D=∠CEF.( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊三角形ABC的邊長為6,在AC,BC邊上各取一點E,F(xiàn),連接AF,BE相交于點P.
(1)若AE=CF;
①求證:AF=BE,并求∠APB的度數(shù);
②若AE=2,試求APAF的值;
(2)若AF=BE,當(dāng)點E從點A運動到點C時,試求點P經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線M上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)∠CBD=
(2)當(dāng)點P運動到某處時,∠ACB=∠ABD,則此時∠ABC=
(3)在點P運動的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個安裝有進出水管的30升容器,水管每單位時間內(nèi)進出的水量是一定的.設(shè)從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,得到水量y(升)與時間x(分鐘)之間的函數(shù)關(guān)系如圖所示.根據(jù)圖象信息給出下列說法:①每分鐘進水5升;②當(dāng)4≤x≤12時,容器中的水量在減少;③若12分鐘后只放水,不進水,還要8分鐘可以把水放完;④若從一開始進出水管同時打開,則需要24分鐘可以將容器灌滿.其中正確的有________(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2+bx+c的圖象與x軸交于兩點,與y軸的正半軸交于一點,且對稱軸為x=1,則下列說法正確的是( )
A.二次函數(shù)的圖象與x軸的交點位于y軸的兩側(cè)
B.二次函數(shù)的圖象與x軸的交點位于y軸的右側(cè)
C.其中二次函數(shù)中的c>1
D.二次函數(shù)的圖象與x軸的一個交于位于x=2的右側(cè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com