(2011•南京)如圖,將?ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.
(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE,求證:四邊形ABEC是矩形.

證明:(1)∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=DC,
∴∠ABF=∠ECF,
∵EC=DC,∴AB=EC,
在△ABF和△ECF中,
∵∠ABF=∠ECF,∠AFB=∠EFC,AB=EC,
∴△ABF≌△ECF.
(2)∵AB=EC,AB∥EC,
∴四邊形ABEC是平行四邊形,
∴FA=FE,F(xiàn)B=FC,
∵四邊形ABCD是平行四邊形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABF+∠BAF,
∴∠ABF=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四邊形ABEC是矩形.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京)如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P為BC的中點(diǎn),動(dòng)點(diǎn)Q從點(diǎn)P出發(fā),沿射線PC方向以2cm/s的速度運(yùn)動(dòng),以P為圓心,PQ長(zhǎng)為半徑作圓.設(shè)點(diǎn)Q運(yùn)動(dòng)的時(shí)間為t s.
(1)當(dāng)t=1.2時(shí),判斷直線AB與⊙P的位置關(guān)系,并說(shuō)明理由;
(2)已知⊙O為△ABC的外接圓.若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京)如圖,菱形ABCD的邊長(zhǎng)是2cm,E是AB的中點(diǎn),且DE丄AB,則菱形ABCD的面積為_______________cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京)如圖,過(guò)正五邊形ABCDE的頂點(diǎn)A作直線l∥CD,則∠1= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2011•南京)如圖,在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為,則a的值是( 。
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(廣東湛江卷)數(shù)學(xué)解析版 題型:解答題

(2011•南京)如圖,某數(shù)學(xué)課外活動(dòng)小組測(cè)量電視塔AB的高度.他們借助一個(gè)高度為30m的建筑物CD進(jìn)行測(cè)量,在點(diǎn)C處測(cè)得塔頂B的仰角為45°,在點(diǎn)E處測(cè)得B的仰角為37°(B、D、E三點(diǎn)在一條直線上).求電視塔的高度h.
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊(cè)答案