【題目】在Rt△ABC中,∠BAC=90,D是BC的中點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作AF//BC交BE的延長線于點(diǎn)F
(1)求證:△AEF≌△DEB;
(2)證明:四邊形ADCF是菱形;
(3)若AB=4,AC=5,求菱形ADCF的面積。
【答案】(1)證明見解析;(2)證明見解析;(3)10.
【解析】
試題分析:(1)根據(jù)AAS證明即可判定.
(2)先證明四邊形ADCF是平行四邊形,再證明DA=DC即可.
(3)利用S菱形ADCF=2S△ADC=S△ABC即可求解.
試題解析:(1)∵AF∥BD,
∴∠AFE=∠DBE,
∵E是AD中點(diǎn),
∴AE=ED,
在△BDE和△FAE中,
,
∴△AFE≌△DBE.
(2)連接CF.
∵△AFE≌△DBE,
∴AF=BD
∵∠BAC=90°,BD=CD,
∴AD=DC=DB,
∴AF∥CD,AF=DC,
∴四邊形ADCF是平行四邊形,
∵DA=CD,
∴四邊形ADCF是菱形.
(3)∵S△ABC=×AB×AC=10,
∵四邊形ADCF是菱形,BD=DC,S△ABC=2S△ADC,
∴S菱形ADCF=2S△ADC=10.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.x2+x2=x4
B.x2y﹣2x2y=﹣x2y
C.(3x)2=3x2
D.x2x3=x6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),在平面直角坐標(biāo)系中,A(a,0),C(b,2),過C作CB⊥x軸,且滿足(a+b)2+=0.
(1)求三角形ABC的面積.
(2)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,求∠AED的度數(shù).
(3)在y軸上是否存在點(diǎn)P,使得三角形ABC和三角形ACP的面積相等?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a是某兩位數(shù)的十位上的數(shù)字,b是它的個(gè)位上的數(shù)字,則這個(gè)數(shù)可表示為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,點(diǎn)C將線段AB分成兩部分(AC>BC),如果=,那么稱點(diǎn)C為線段AB的黃金分割點(diǎn).某數(shù)學(xué)興趣小組在進(jìn)行課題研究時(shí),由黃金分割點(diǎn)聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個(gè)面積為S的圖形分成面積分別為S1,S2(S1>S2)的兩部分,如果=,那么稱直線l為該圖形的黃金分割線.
(1)如圖乙,在△ABC中,∠A=36°,AB=AC,∠ACB的平分線交AB于點(diǎn)D,請問點(diǎn)D是否是AB邊上的黃金分割點(diǎn),并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖丙,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖丁,在Rt△ABC中,∠ACB=90°,D為斜邊AB上的一點(diǎn),(不與A,B重合)過D作DE⊥BC于點(diǎn)E,連接AE,CD相交于點(diǎn)F,連接BF并延長,與DE,AC分別交于點(diǎn)G,H.請問直線BH是直角三角形ABC的黃金分割線嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(-4,),B(-1,2)是一次函數(shù)y=kx+b的圖像與反比例函數(shù)(m≠0,m<0)的函數(shù)圖像的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D
(1)根據(jù)函數(shù)圖像直接回答問題:在第二象限內(nèi),當(dāng)x取何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
(2)求一次函數(shù)的表達(dá)式及m的值;
(3)點(diǎn)P是線段AB上一點(diǎn),連接PC,PD,若△PCA和△PBD的面積相等,求點(diǎn)P的坐標(biāo)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com