【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙中將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)B的對(duì)應(yīng)點(diǎn)B′.
(1)請(qǐng)畫出平移后的△A′B′C′;
(2)若連接AA′,CC′,則這兩條線段之間的關(guān)系是 ;
(3)利用網(wǎng)格畫出△ABC 中AC邊上的中線BD;
(4)利用網(wǎng)格畫出△ABC 中AB邊上的高CE;
(5)△A′B′C′的面積為 .
【答案】(1)圖解見解析;(2)平行且相等;(3)(4)圖解見解析;(5)10;
【解析】
試題分析:(1)利用平移變換的性質(zhì)得出對(duì)應(yīng)點(diǎn)位置進(jìn)而得出答案;
(2)利用平移變換的性質(zhì)得出答案;
(3)利用網(wǎng)格結(jié)合三角形中線的性質(zhì)得出答案;
(4)利用網(wǎng)格結(jié)合三角形高線的性質(zhì)得出答案;
(5)利用平移的性質(zhì)結(jié)合三角形面積求法得出答案.
解:(1)如圖所示:△A′B′C′即為所求;
(2)連接AA′,CC′,則這兩條線段之間的關(guān)系是平行且相等.
故答案為:平行且相等;
(3)如圖所示:BD即為所求;
(4)如圖所示:CE即為所求;
(5)△A′B′C′的面積為△ABC的面積:×5×4=10.
故答案為:10.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,請(qǐng)按照?qǐng)D中所標(biāo)注的數(shù)據(jù),計(jì)算圖中實(shí)線所圍成的圖形的面積S是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷不正確的是( )
A. 形狀相同的圖形是全等圖形 B. 能夠完全重合的兩個(gè)三角形全等
C. 全等圖形的形狀和大小都相同 D. 全等三角形的對(duì)應(yīng)角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探索研究.請(qǐng)解決下列問題:
(1)已知△ABC中,∠A=90°,∠B=67.5°,請(qǐng)畫一條直線,把這個(gè)三角形分割成兩個(gè)等腰三角形.(請(qǐng)你選用下面給出的備用圖,并把所有不同的分割方法都畫出來,圖不夠可以自己畫.只需畫圖,不必說明理由,但要在圖中標(biāo)出相等兩角的度數(shù)).
(2)已知等腰△ABC中,AB=AC,D為BC上一點(diǎn),連接AD,若△ABD和△ACD都是等腰三角形,則∠B的度數(shù)為 (請(qǐng)畫出示意圖,并標(biāo)明必要的角度).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=(m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(﹣2,0),且tan∠ACO=2.
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)在x軸上求點(diǎn)E,使△ACE為直角三角形.(直接寫出點(diǎn)E的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了迎接元旦小長(zhǎng)假的購(gòu)物高峰,黃興南路步行街某運(yùn)動(dòng)品牌專賣店購(gòu)進(jìn)甲、乙兩種服裝,現(xiàn)此商店同時(shí)賣出甲、乙兩種服裝各一件,每件售價(jià)都為240元,其中一件賺了20%,另一件虧了20%,那么這個(gè)商店賣出這兩件服裝總體的盈虧情況是( )
A. 賺了12元 B. 虧了12元 C. 賺了20元 D. 虧了20元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點(diǎn)O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.
(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】推理填空:如圖:
①若∠1=∠2,
則 ∥ (內(nèi)錯(cuò)角相等,兩直線平行);
若∠DAB+∠ABC=180°,
則 ∥ (同旁內(nèi)角互補(bǔ),兩直線平行);
②當(dāng) ∥ 時(shí),
∠C+∠ABC=180°(兩直線平行,同旁內(nèi)角互補(bǔ));
③當(dāng) ∥ 時(shí),
∠3=∠C (兩直線平行,同位角相等).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com