已知a、b是實數(shù),下列四條命題:
①如果|a|=|b|,那么a=b;
②如果,那么a=b;
③如果|a|=|b|,那么;
④如果,那么|a|=|b|.
其中真命題的是    ;(填寫所有真命題的序號)
【答案】分析:根據(jù)絕對值得性質(zhì)以及二次根式的性質(zhì)分別分析得出答案即可.
解答:解:①如果|a|=|b|,那么a=±b,故此選項錯誤;
②如果,那么a=b;根據(jù)二次根式的性質(zhì),故此選項正確;
③如果|a|=|b|,那么,∵|a|=|b|中,a,b可以是負(fù)數(shù),故此選項錯誤;
④如果,那么|a|=|b|,a,b為非負(fù)數(shù),故此選項正確;
故答案為:②④.
點(diǎn)評:此題主要考查了實數(shù)的性質(zhì),熟練根據(jù)二次根式的性質(zhì)得出是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知x1,x2是一元二次方程(k+1)x2+2kx+k-3=0的兩個不相等的實數(shù)根.
(1)求實數(shù)k的取值范圍.
(2)在(1)條件下,當(dāng)k為最小整數(shù)時一元二次方程x2-x+k=0與x2+mx-m2=0只有一個相同的根,求m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知x1,x2是關(guān)于x的方程x2-2x+k2-4k-1=0的兩個實數(shù)根.
(1)若x1+2x2=3-
2
,求x1,x2及k的值;
(2)在(1)的條件下,求x13-3x12+2x1+x2的值.
(3)若以方程x2-2x+k2-4k-1=0的兩個根為橫坐標(biāo)、縱坐標(biāo)的點(diǎn)恰在反比例函數(shù)y=
m
x
的圖象上,求滿足條件的m的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線數(shù)學(xué)公式(b是實數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為______,點(diǎn)C的坐標(biāo)為______(用含b的代數(shù)式表示);
(2)若b=8,請你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
(3)請你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省湖州市長興縣實驗初中九年級下學(xué)期期中調(diào)研數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為      ,點(diǎn)C的坐標(biāo)為      (用含b的代數(shù)式表示);
(2)若b=8,請你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;
(3)請你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆浙江省湖州市九年級下學(xué)期期中調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知拋物線(b是實數(shù)且b>2)與x軸的正半軸分別交于點(diǎn)A、B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的正半軸交于點(diǎn)C.

(1)點(diǎn)B的坐標(biāo)為      ,點(diǎn)C的坐標(biāo)為      (用含b的代數(shù)式表示);

(2)若b=8,請你在拋物線上找點(diǎn)P,使得△PAC是直角三角形?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請說明理由;

(3)請你探索,在(1)的結(jié)論下,在第一象限內(nèi)是否存在點(diǎn)Q,使得△QCO、△QOA和△QAB中的任意兩個三角形均相似(全等可看作相似的特殊情況)如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案