如圖,△ABC是等邊三角形,E是AC上一點,D是BC延長線上一點,連接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度數(shù).
分析:由三角形ABC為等邊三角形,利用等邊三角形的性質(zhì)得到三個內(nèi)角為60°,根據(jù)∠ABE=40°,求出∠EBC的度數(shù),根據(jù)BE=DE,利用等邊對等角得到∠EBC=∠D,求出∠D的度數(shù),利用外角性質(zhì)即可求出∠CED的度數(shù).
解答:解:∵△ABC是等邊三角形,
∴∠ABC=∠ACB=60°,
∵∠ABE=40°,
∴∠EBC=∠ABC-∠ABE=60°-40°=20°,
∵BE=DE,
∴∠D=∠EBC=20°,
∴∠CED=∠ACB-∠D=40°.
點評:此題考查了等邊三角形的性質(zhì),以及外角性質(zhì),熟練掌握等邊三角形的性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網(wǎng)∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結(jié)BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案