直線y=-數(shù)學(xué)公式x+6與坐標(biāo)軸分別交于A、B兩點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從O點(diǎn)出發(fā),同時(shí)到達(dá)A作业宝點(diǎn),運(yùn)動(dòng)停止.點(diǎn)Q沿線段OA運(yùn)動(dòng),速度為每秒1個(gè)單位長(zhǎng)度,點(diǎn)P沿路線O→B→A運(yùn)動(dòng).
(1)直接寫(xiě)出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)Q的運(yùn)動(dòng)時(shí)間為t(秒),△OPQ的面積為S,求出S與t之間的函數(shù)關(guān)系式;
(3)當(dāng)S=數(shù)學(xué)公式時(shí),求出點(diǎn)P的坐標(biāo),并直接寫(xiě)出以點(diǎn)O、P、Q為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)M的坐標(biāo).

解:(1)y=0,x=0,求得A(8,0),B(0,6),

(2)∵OA=8,OB=6,
∴AB=10.
∵點(diǎn)Q由O到A的時(shí)間是(秒),
∴點(diǎn)P的速度是=2(單位長(zhǎng)度/秒).
當(dāng)P在線段OB上運(yùn)動(dòng)(或O≤t≤3)時(shí),
OQ=t,OP=2t,S=t2
當(dāng)P在線段BA上運(yùn)動(dòng)(或3<t≤8)時(shí),
OQ=t,AP=6+10-2t=16-2t,
如圖,過(guò)點(diǎn)P作PD⊥OA于點(diǎn)D,
,得PD=
∴S=OQ•PD=-

(3)當(dāng)S=時(shí),∵,∴點(diǎn)P在AB上
當(dāng)S=時(shí),-=
∴t=4
∴PD==,AP=16-2×4=8
AD==
∴OD=8-=
∴P(
M1,),M2(-,),M3,-
分析:(1)分別令y=0,x=0,即可求出A、B的坐標(biāo);
(2)因?yàn)镺A=8,OB=6,利用勾股定理可得AB=10,進(jìn)而可求出點(diǎn)Q由O到A的時(shí)間是8秒,點(diǎn)P的速度是2,從而可求出,
當(dāng)P在線段OB上運(yùn)動(dòng)(或0≤t≤3)時(shí),OQ=t,OP=2t,S=t2,當(dāng)P在線段BA上運(yùn)動(dòng)(或3<t≤8)時(shí),OQ=t,AP=6+10-2t=16-2t,作PD⊥OA于點(diǎn)D,由相似三角形的性質(zhì),得,利用S=OQ×PD,即可求出答案;
(3)令S=,求出t的值,進(jìn)而求出OD、PD,即可求出P的坐標(biāo),利用平行四邊形的對(duì)邊平行且相等,結(jié)合簡(jiǎn)單的計(jì)算即可寫(xiě)出M的坐標(biāo).
點(diǎn)評(píng):本題需仔細(xì)分析題意,結(jié)合圖象,利用函數(shù)解析式即可解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•河北一模)如圖,已知直線y=x+4與兩坐???軸分別交于A、B兩點(diǎn),⊙C的圓心坐標(biāo)為 (2,O),半徑為2,若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于點(diǎn)E,則△ABE面積的最小值和最大值分別是
8-2
2
和8+2
2
8-2
2
和8+2
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線y=2x+4與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線AB上有一點(diǎn)Q在第一象限且到y(tǒng)軸的距離為2.
(1)求點(diǎn)A、B、Q的坐標(biāo),
(2)若點(diǎn)P在坐x軸上,且PO=24,求△APQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

表1給出了直線l1上部分點(diǎn)(x,y)的坐標(biāo)值,表2給出了直線l2上部分點(diǎn)(x,y)的坐標(biāo)值.
表1:
x -2 0 2 4
y 3 1 -1 -3
表2:
x -2 0 2
y -5 -3 -1
(1)直線l1與y軸的交點(diǎn)坐標(biāo)是
(0,1)
(0,1)

(2)直線l1、l2與y軸圍成的三角形的面積等于
4
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

表1給出了直線l1上部分點(diǎn)(x,y)的坐標(biāo)值,表2給出了直線l2上部分點(diǎn)(x,y)的坐標(biāo)值.
表1:
x-2024
y31-1-3
表2:
x-202
y-5-3-1
(1)直線l1與y軸的交點(diǎn)坐標(biāo)是______;
(2)直線l1、l2與y軸圍成的三角形的面積等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

表1給出了直線l1上部分點(diǎn)(x,y)的坐標(biāo)值,表2給出了直線l2上部分點(diǎn)(x,y)的坐標(biāo)值.
表1:
x -2 0 2 4
y 3 1 -1 -3
表2:
x -2 0 2
y -5 -3 -1
(1)直線l1與y軸的交點(diǎn)坐標(biāo)是______;
(2)直線l1、l2與y軸圍成的三角形的面積等于______.

查看答案和解析>>

同步練習(xí)冊(cè)答案