【題目】已知:如圖,拋物線y=ax2+bx+2與x軸交于點(diǎn)A(4,0)、E(-2,0)兩點(diǎn),連結(jié)AB,過(guò)點(diǎn)A作直線AK⊥AB,動(dòng)點(diǎn)P從A點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度沿射線AK運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒,過(guò)點(diǎn)P作PC⊥x軸,垂足為C,把△ACP沿AP對(duì)折,使點(diǎn)C落在點(diǎn)D處.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)D在△ABP的內(nèi)部時(shí),△ABP與△ADP不重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式,并直接寫(xiě)出t的取值范圍;
(3)若線段AC的長(zhǎng)是線段BP長(zhǎng)的,請(qǐng)直接寫(xiě)出此時(shí)t的值;
(4)是否存在這樣的時(shí)刻,使動(dòng)點(diǎn)D到點(diǎn)O的距離最?若存在請(qǐng)直接寫(xiě)出這個(gè)最小距離;若不存在,說(shuō)明理由.
【答案】(1)y=-x2+x+2,(2)S=-t2+5t(0<t<4)(3)t=;(4).
【解析】
試題分析:(1)用待定系數(shù)法求出拋物線解析式;
(2)先根據(jù)點(diǎn)D在△APB內(nèi)部,求出t的范圍,然后用△APB減去△APC面積求出不重疊的部分面積;
(3)根據(jù)兩點(diǎn)間的距離公式表示出BP,根據(jù)條件建立方程,求出時(shí)間;
(4)先判斷出點(diǎn)D到點(diǎn)O的距離最小時(shí)的位置,然后用三角函數(shù)和勾股定理計(jì)算.
試題解析:(1)將A,B,E三點(diǎn)代入拋物線解析式中,得
,∴
∴y=-x2+x+2,
(2)∵A(4,0),B(0,2)
∴直線AB解析式為y=-x+2,
∵AB⊥AK,
∴直線AK解析式為y=2x+8,
∴tan∠PAC==2,
∵AP=t,
∴AC=t,PC=2t,
∵D在△ABP內(nèi)部,
∴∠APB>∠APC,
∴tan∠APB>tan∠APC,
∴,
∴,
∴t<4,
∴0<t<4,
∴S=S△APB-S△APD
=S△APB-S△APC
=×AB×AP-×AC×PC
=×2×t-×t×2t
=-t2+5t(0<t<4)
(3)∵P(t+4,2t),
∴BP=,
∵線段AC的長(zhǎng)是線段BP長(zhǎng)的,
∴t=,
∴t=-(舍)t=
(4)要使點(diǎn)D到O的距離最小,則有點(diǎn)D在OP上,此時(shí)記作D1
在Rt△OCP中,tan∠POC=,
在Rt△OCP中,tan∠AOC=,
∴,
∴OD1=,
根據(jù)勾股定理得,OD12+AD12=OA2,
∴()2+t2=16,
∴t=-4(舍)t=,
∴AD1==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將二次函數(shù)y=x2-4x-4化為y=a(x-h(huán))2+k的形式,正確的是( )
A. y=(x-2)2 B. y=(x+2)2-8
C. y=(x+2)2 D. y=(x-2)2-8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列分解因式正確的是( 。
A. 3x2﹣6x=x(3x﹣6) B. ﹣a2+b2=(b+a)(b﹣a)
C. 4x2﹣y2=(4x+y)(4x﹣y) D. 4x2﹣2xy+y2=(2x﹣y)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你寫(xiě)一個(gè)一元二次方程,使該方程有一根為0,則這個(gè)方程可以是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了進(jìn)一步開(kāi)展“陽(yáng)光體育”活動(dòng),計(jì)劃用2000元購(gòu)買(mǎi)乒乓球拍,用2800元購(gòu)買(mǎi)羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購(gòu)買(mǎi)的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?
(1)根據(jù)題意,甲和乙兩同學(xué)都先假設(shè)該校購(gòu)買(mǎi)的乒乓球拍與羽毛球拍的數(shù)量能相同,并分別列出的方程如下:甲:;乙:,根據(jù)兩位同學(xué)所列的方程,請(qǐng)你分別指出未知數(shù)x,y表示的意義:
甲:x表示 ;乙:y表示 ;
(2)該校購(gòu)買(mǎi)的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?說(shuō)明理由(寫(xiě)出完整的解答過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題是真命題的是( )
A. 過(guò)一點(diǎn)有且只有一條直線與已知直線垂直
B. 三角形任意兩邊之和小于第三邊
C. 三角形的一個(gè)外角大于它的任何一個(gè)內(nèi)角
D. 平行與同一條直線的兩直線平行
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com