如圖,已知點E,C在線段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求證:△ABC≌△DEF;
(2)試判斷:四邊形AECD的形狀,并證明你的結論.

證明:(1)∵AB∥DE,
∴∠B=∠DEF,
∵BE=EC=CF,
∴BC=EF,
在△ABC和△DEF中

∴△ABC≌△DEF.

(2)四邊形AECD的形狀是平行四邊形,
證明:∵△ABC≌△DEF,
∴AC=DF,
∵∠ACB=∠F,
∴AC∥DF,
∴四邊形ACFD是平行四邊形,
∴AD∥CF,AD=CF,
∵EC=CF,
∴AD∥EC,AD=CE,
∴四邊形AECD是平行四邊形.
分析:(1)根據(jù)平行線得出∠B=∠DEF,求出BC=EF,根據(jù)ASA推出兩三角形全等即可;
(2)根據(jù)全等得出AC=DF,推出AC∥DF,得出平行四邊形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根據(jù)平行四邊形的判定推出即可.
點評:本題考查了平行線的性質和判定,平行四邊形的性質和判定,全等三角形的判定和性質的應用,主要考查學生的推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知點B、D在直線AE上,AC∥DF,∠C=∠F,AD=BE,試說明BC∥EF的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點C、D在以O為圓心,AB為直徑的半圓上,且OC⊥BD于點M,CF⊥AB于點F交精英家教網BD于點E,BD=8,CM=2.
(1)求⊙O的半徑;
(2)求證:CE=BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•建鄴區(qū)一模)如圖,已知點E,C在線段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.
(1)求證:△ABC≌△DEF;
(2)試判斷:四邊形AECD的形狀,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點A,B分別在x軸和y軸上,且OA=OB=3
2
,點C的坐標是C(
7
2
2
,
7
2
2
)AB與OC相交于點G.點P從O出發(fā)以每秒1個單位的速度從O運動到C,過P作直線EF∥AB分別交OA,OB或BC,AC于E,F(xiàn).解答下列問題:
(1)直接寫出點G的坐標和直線AB的解析式.
(2)若點P運動的時間為t,直線EF在四邊形OACB內掃過的面積為s,請求出s與t的函數(shù)關系式;并求出當t為何值時,直線EF平分四邊形OACB的面積.
(3)設線段OC的中點為Q,P運動的時間為t,求當t為何值時,△EFQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知點D、F在線段BC上,點E在線段BA的延長線上,EF與AC交于點G,且∠EFC=∠ADC,∠AGE=∠E.請說出AD平分∠BAC的理由.

查看答案和解析>>

同步練習冊答案