【題目】某記者在某區(qū)隨機選取了幾個停車場對開車司機進行了相關的調(diào)查,本次調(diào)查結果有四種情形:
A.喝酒后開車 B.喝酒后不開車或請代駕 C.開車當天不喝酒 D.從不喝酒
將這次調(diào)查情況整理并繪制了如下尚不完整的兩個統(tǒng)計圖.請根據(jù)相關信息,解答下列問題:
(1)該記者本次一共調(diào)查了名司機;
(2)圖1中情況D所在扇形的圓心角為°;
(3)補全圖2;
(4)本次調(diào)查中,記者隨機采訪其中的一名司機,則他屬于情況C的概率是
(5)若該區(qū)有3萬名司機,則其中不違反“酒駕”禁令的人數(shù)約為人.
【答案】
(1)200
(2)162
(3)解:∵B類人數(shù)占8%,
∴B類人數(shù)=200×8%=16人,
∴C類人數(shù)=200﹣16﹣2﹣90=92人,
∴條形統(tǒng)計圖如圖
(4)
(5)29700
【解析】解:(1)∵喝酒后開車的人數(shù)是2人,占總人數(shù)的1%,
∴總人數(shù)= =200(名).
所以答案是:200;(2)∵D類人數(shù)是90名,
∴ ×360°=162(名).
所以答案是:162;(4)∵C類人數(shù)是92人,
∴記者隨機采訪其中的一名司機,則他屬于情況C的概率= = .
所以答案是: ;(5)∵不違反酒駕禁令的人數(shù)占總人數(shù)的百分比= ×100%=99%,
∴該區(qū)有3萬名司機,則其中不違反“酒駕”禁令的人數(shù)約=30000×99%=29700(人).
所以答案是:29700.
【考點精析】本題主要考查了扇形統(tǒng)計圖和條形統(tǒng)計圖的相關知識點,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BC=4,以點A為圓心,2為半徑的⊙A與BC相切于點D,交AB于點E,交AC于點F,點P是⊙A上的一點,且∠EPF=45°,則圖中陰影部分的面積為( )
A.4﹣π
B.4﹣2π
C.8+π
D.8﹣2π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年5月份,某校九年級學生參加了南寧市中考體育考試,為了了解該校九年級(1)班同學的中考體育情況,對全班學生的中考體育成績進行了統(tǒng)計,并繪制以下不完整的頻數(shù)分布表(如表)和扇形統(tǒng)計圖(如圖),根據(jù)圖表中的信息解答下列問題:
(1)求全班學生人數(shù)和m的值.
(2)直接學出該班學生的中考體育成績的中位數(shù)落在哪個分數(shù)段.
(3)該班中考體育成績滿分共有3人,其中男生2人,女生1人,現(xiàn)需從這3人中隨機選取2人到八年級進行經(jīng)驗交流,請用“列表法”或“畫樹狀圖法”求出恰好選到一男一女的概率.
分組 | 分數(shù)段(分) | 頻數(shù) |
A | 36≤x<41 | 2 |
B | 41≤x<46 | 5 |
C | 46≤x<51 | 15 |
D | 51≤x<56 | m |
E | 56≤x<61 | 10 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰Rt△,如此繼續(xù)下去,直到所畫直角三角形的斜邊與△ABC的BC邊在同一直線上時為止,此時,這個直角三角形的斜邊長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,B,C的坐標分別為(1,0),(0,1),(﹣1,0).一個電動玩具從坐標原點0出發(fā),第一次跳躍到點P1 . 使得點P1與點O關于點A成中心對稱;第二次跳躍到點P2 , 使得點P2與點P1關于點B成中心對稱;第三次跳躍到點P3 , 使得點P3與點P2關于點C成中心對稱;第四次跳躍到點P4 , 使得點P4與點P3關于點A成中心對稱;第五次跳躍到點P5 , 使得點P5與點P4關于點B成中心對稱;…照此規(guī)律重復下去,則點P7的坐標是 , 點P2016的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△COD是△AOB繞點O順時針旋轉(zhuǎn)40°后得到的圖形,若點C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是( )
A.40°
B.50°
C.60°
D.70°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABD中,AB=AD,以AB為直徑的⊙F交BD于點C,交AD與點E,CG⊥AD于點G.
(1)求證:GC是⊙F的切線;
(2)填空:①若△BCF的面積為15,則△BDA的面積為
②當∠GCD的度數(shù)為時,四邊形EFCD是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應的任務.
幾何中,平行四邊形、矩形、菱形、正方形和等腰梯形都是特殊的四邊形,大家對于它們的性質(zhì)都非常熟悉,生活中還有一種特殊的四邊形﹣﹣箏形.所謂箏形,它的形狀與我們生活中風箏的骨架相似. |
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:
如果只研究一般的箏形(不包括菱形),請根據(jù)以上材料完成下列任務:
(1)請說出箏形和菱形的相同點和不同點各兩條;
(2)請仿照圖1的畫法,在圖2所示的8×8網(wǎng)格中重新設計一個由四個全等的箏形和四個全等的菱形組成的新圖案,具體要求如下:
①頂點都在格點上;
②所設計的圖案既是軸對稱圖形又是中心對稱圖形;
③將新圖案中的四個箏形都圖上陰影(建議用一系列平行斜線表示陰影).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com