有理數(shù)a,b,滿足|a-b-2|+(2a+2b-8)2=0,(-
13
ab)•(-b3)•(2ab)
=
6
6
分析:所求式子利用單項(xiàng)式乘以單項(xiàng)式法則計(jì)算得到最簡(jiǎn)結(jié)果,由非負(fù)數(shù)之和為0,非負(fù)數(shù)分別為0求出a與b的值,代入計(jì)算即可求出值.
解答:解:∵|a-b-2|+(2a+2b-8)2=0,
∴a-b-2=0,2a+2b-8=0,
解得:a=3,b=1,
則(-
1
3
ab)•(-b3)•(2ab)=
2
3
a2b5=
2
3
×9×1=6.
故答案為:6
點(diǎn)評(píng):此題考查了整式的混合運(yùn)算-化簡(jiǎn)求值,涉及的知識(shí)有:?jiǎn)雾?xiàng)式與單項(xiàng)式的乘法法則,以及非負(fù)數(shù)的性質(zhì),熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知有理數(shù)a,b,c滿足①5(x-y+3)2+2|m-2|=0;②n3a2-yb5+z是一個(gè)三次單項(xiàng)式且系數(shù)為-1:
(1)求m,n的值;   (2)求代數(shù)式(x-y)m+1+(y-z)1-n+(z-x)5的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有理數(shù)a、b、c滿足下列條件:a+b+c=0且abc<0,那么
1
a
+
1
b
+
1
c
的值是(  )
A、是正數(shù)
B、是零
C、是負(fù)數(shù)
D、不能確定是正數(shù)、負(fù)數(shù)或0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有理數(shù)a、b、c滿足a+b+c=0,abc=-9,則a、b、c中負(fù)數(shù)的個(gè)數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知有理數(shù)a、b、c滿足①5(a+3)2+2|b-2|=0;②2x2-ay1+b+c是一個(gè)七次單項(xiàng)式,求多項(xiàng)式a2b-[a2b-(2abc-a2c-3a2b)-4a2c]-abc的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

己知有理數(shù)x,y,z滿足(x-4)2+3︳x+y-z︳=0,則(5x+3y-3z)2012的末位數(shù)字是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案