如圖(1)已知在△ABC中,AB=AC,P是△ABC內(nèi)任意一點(diǎn)將AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AQ,使∠QAP=∠BAC,連接BQ、CP,則BQ=CP,請(qǐng)證明;
若將點(diǎn)P移到等腰ABC之外,原題中其它條件不變,上面的結(jié)論是否成立?請(qǐng)說(shuō)明理由.

【答案】分析:根據(jù)旋轉(zhuǎn)的性質(zhì)及已知,利用SAS判定△QAB≌△PAC,從而得到BQ=CP;同理,第二問(wèn)也可證明成立.
解答:(1)證明:∵∠QAP=∠BAC,
∴∠QAB=∠PAC,
∵AP=AQ,AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.

(2)成立;
證明:∵∠QAP=∠BAC,
∴∠QAB=∠PAC,
∵AP=AQ,AB=AC,
∴△QAB≌△PAC(SAS),
∴BQ=CP.
點(diǎn)評(píng):此題主要考查學(xué)生以旋轉(zhuǎn)的性質(zhì),全等三角形的判定及等腰三角形的性質(zhì)的綜合運(yùn)用能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C.A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂精英家教網(wǎng)直于直線OA,垂足為Q,設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖所示,已知在△ABC中,∠BAC=90°,AB=AC,l是過(guò)A點(diǎn)的直線,BD⊥l交直線l于點(diǎn)D,CE⊥l交直線l于點(diǎn)E.
(1)求證:△ABD≌△CAE.
(2)若BD=2.5cm,CE=0.8cm,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、如圖所示,已知在△ABC中,∠B=∠C,點(diǎn)D、E是BC邊上的兩點(diǎn),且∠ADC=∠AEB,判斷BD是否等于CE,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知在直角梯形OABC中,AB∥OC,BC⊥x軸于點(diǎn)C,A(1,1)、B(3,1).動(dòng)點(diǎn)P從O點(diǎn)出發(fā),沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度移動(dòng).過(guò)P點(diǎn)作PQ垂直于直線OA,垂足為Q.設(shè)P點(diǎn)移動(dòng)的時(shí)間為t秒(0<t<4),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)求經(jīng)過(guò)O、A、B三點(diǎn)的拋物線解析式;
(2)求S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使得以C、P、Q為頂點(diǎn)的三角形與△OAB相似?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)將△OPQ繞著點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,是否存在t,使得△OPQ的頂點(diǎn)O或Q在拋物線上?若存在,直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于點(diǎn)E,若∠B=28°,則∠AEC=
59
59
°.

查看答案和解析>>

同步練習(xí)冊(cè)答案