【題目】如圖,AD∥BC,BC=2AD,E為BC的中點,R為DC的中點,BR交AE于點P,則EP:AP= .
【答案】.
【解析】
試題分析:先由BC=2AD,BE=EC=BC,得出BE=EC=AD,根據(jù)AD∥BC,由一組對邊平行且相等的四邊形是平行四邊形可得四邊形ADCE是平行四邊形,那么EA=CD,EA∥CD.得出△BEP∽△BCR,于是EP=CR,而CR=CD,那么EP=CD=EA,然后根據(jù)比例的性質(zhì)即可求出答案即可.
解:∵BC=2AD,BE=EC=BC,
∴BE=EC=AD,
∵在等腰梯形ABCD中,AD∥BC,
∴四邊形ADCE是平行四邊形,
∴EA=CD,EA∥CD,
∴△BEP∽△BCR,
∵BE=EC=BC,
∴EP=CR,
∵CR=CD,
∴EP=CD=EA,
∴=,
∴EP:AP=.
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C.拋物線y=ax2+bx+c的對稱軸是x=﹣且經(jīng)過A、C兩點,與x軸的另一交點為點B.
(1)①直接寫出點B的坐標;②求拋物線解析式.
(2)若點P為直線AC上方的拋物線上的一點,連接PA,PC.求△PAC的面積的最大值,并求出此時點P的坐標.
(3)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,P點在AD邊上以每秒1cm的速度從A向D運動,點Q在BC邊上,以每秒4cm的速度從C點出發(fā),在CB間往返運動,二點同時出發(fā),待P點到達D點為止,在這段時間內(nèi),線段PQ有( )次平行于AB.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中,正確的是( )
A. 三角形的內(nèi)心到三角形的三個頂點的距離相等 B. 三點確定一個圓
C. 垂直于半徑的直線一定是這個圓的切線 D. 任何三角形有且只有一個內(nèi)切圓
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有一枚質(zhì)地均勻的正方體骰子,六個面分別寫有1、2、3、4、5、6的數(shù)字,規(guī)定“拋擲該枚骰子得到的數(shù)字是拋擲后,面朝上的那一個數(shù)字”.先后拋擲這枚骰子兩次,得到的數(shù)字分別記為b和c,則當x>﹣3時,函數(shù)y=x2+bx+c隨x的增大而增大的概率是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com