【題目】如圖,在矩形ABCD中,E是AD上一點(diǎn),AB=8,BE=BC=10,動(dòng)點(diǎn)P在線段BE上(與點(diǎn)B、E不重合),點(diǎn)Q在BC的延長(zhǎng)線上,PE=CQ,PQ交EC于點(diǎn)F,PG∥BQ交EC于點(diǎn)G,設(shè)PE=x.
(1)求證:△PFG≌△QFC
(2)連結(jié)DG.當(dāng)x為何值時(shí),四邊形PGDE是菱形,請(qǐng)說(shuō)明理由;
(3)作PH⊥EC于點(diǎn)H.探究:
①點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段HF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由;若不變,求HF的長(zhǎng)度;
②當(dāng)x為何值時(shí),△PHF與△BAE相似
【答案】(1)證明見(jiàn)解析;(2)當(dāng)x=4時(shí),四邊形PGDE是菱形,理由見(jiàn)解析;(3)①不變化,HF,②當(dāng)或時(shí),△PHF與△BAE相似
【解析】試題分析:(1)根據(jù)全等三角形的判定ASA即可證出;(2)先證出PG∥BQ,AD∥BC得到四邊形PGDE是平行四邊形,再根據(jù)四邊形PGDE是菱形得出PG=PE=4;(3)① 證出△PFG≌△QFC,求出HF的長(zhǎng);②分兩種情況討論得出.
試題解析:
(1)證明:∵BC=BE ∴∠BCE=∠PEC
∵PG∥BQ
∴∠BCE=∠PGE, ∠Q=∠FPG ,∠QCF=∠PGF
∴∠PGE=∠PEC
∴PE=PG
∵PE=CQ
∴ PG =CQ
∴△PFG≌△QFC (ASA)
(2)連結(jié)DG.當(dāng)x=4時(shí),四邊形PGDE是菱形,
理由如下;
∵四邊形ABCD是矩形,
∴AD∥BC
AB=CD=8,AD=BC=BE=10
在Rt△ABE中
AE=
∴DE=AD-AE=10-6=4
由(1)知PG=PE=x=4
∴PG=DE
∵PG∥BQ,AD∥BC
∴PG∥DE
∴四邊形PGDE是平行四邊形,
∵PG=PE=4
∴四邊形PGDE是菱形
(3)①不變化
在Rt△ABE中
CE=
∵PG=PE,PH⊥EC
∴EH=HG=EG(等腰三角形“三線合一”)
∵△PFG≌△QFC
∴CF=GF=CG
∴HF=HG+FG=EG+CG=CE=
②∵PG∥DE, ∴∠DEC=∠PGH
在Rt△PGH中
PH=PG×sin∠PGH= x×sin∠DEC= x×= x×=
分兩種情況討論:
(I)若△PHF/span>∽△EAB,則
∴
∴
∴當(dāng)時(shí),△PHF∽△BAE.
(II)若△PHF∽△BAE,則
∴
∴
∴當(dāng)或時(shí),△PHF與△BAE相似
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長(zhǎng)五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖. 根據(jù)上述信息,解答下列問(wèn)題:
(1)本次抽取的學(xué)生人數(shù)是 ______ ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ______ ;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測(cè)試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請(qǐng)用列表法或畫(huà)樹(shù)狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】延長(zhǎng)線段AB到C,下列說(shuō)法正確的是( 。
A.點(diǎn)C在線段AB上
B.點(diǎn)C在直線AB上
C.點(diǎn)C不在直線AB上
D.點(diǎn)C在直線BA的延長(zhǎng)線上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫度通常有兩種表示方法:華氏度(單位:℉)與攝氏度(單位:℃),已知華氏度數(shù)y與攝氏度數(shù)x之間是一次函數(shù)關(guān)系,如表列出了部分華氏度與攝氏度之間的對(duì)應(yīng)關(guān)系:
攝氏度數(shù)x(℃) | … | 0 | … | 35 | … | 100 | … |
華氏度數(shù)y(℉) | … | 32 | … | 95 | … | 212 | … |
(1)選用表格中給出的數(shù)據(jù),求y關(guān)于x的函數(shù)解析式(不需要寫(xiě)出該函數(shù)的定義域);
(2)已知某天的最低氣溫是﹣5℃,求與之對(duì)應(yīng)的華氏度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=﹣3(x﹣1)2+2的開(kāi)口向_____,對(duì)稱(chēng)軸為_____,頂點(diǎn)坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列長(zhǎng)度的三條線段,不能組成三角形的是( )
A.3,8,4
B.4,9,6
C.15,20,8
D.9,15,8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)(a,2)與點(diǎn)(b,﹣2)關(guān)于原點(diǎn)中心對(duì)稱(chēng),則a+b的值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)的三個(gè)點(diǎn)A(1,-3)、B(0,-3)、C(2,-3),___ 確定一個(gè)圓.(填“能”或“不能”)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com