試題分析:(1)利用三角形內(nèi)角和算出∠A,等腰三角形性質(zhì)算出∠BDE,再用折疊性質(zhì)得到∠EDF=∠A,根據(jù)平角性質(zhì)得到∠CDF,再算出∠DFC,進行判斷即可;(2)若△BDE為等腰三角形,共有三種可能:
①BD=BE;由(1)可知,若BD=BE,則△CDF不是等腰三角形;
②BE=ED,可得:∠EDB=∠B=48°,又∠EDF=∠A=70°,得到∠FDC的度數(shù);進行判斷即可;
③BD=ED,同樣求出∠BDE和∠CDF,∠DFC,然后進行判斷.
試題解析:(1)△CDF不是等腰三角形;理由:
∵∠B=48°,∠C=62°,∴∠A=180°-48°-62°=70°,
∵BD=BE,∴∠BDE=(180°-48°)÷2=66°,
∵△AEF沿EF折疊得△DEF,∴∠EDF=∠A=70°,
∴∠FDC=180°-66°-70°=44°,∴∠DFC=180°-44°-62°=74°,
∴△CDF不是等腰三角形.
(2)△BDE、△CDF能同時為等腰三角形.
∵△BED為等腰三角形,共有三種情況,BD=BE,BE=ED,BD=ED.
①若BD=BE;由(1)可知,若BD=BE,則△CDF不是等腰三角形;
②若BE=ED,可得:∠EDB=∠B=48°,又∵∠EDF=∠A=70°,∴∠FDC=180°-48°-70°=62°,∵∠C=62°,∴△DFC是等腰三角形,此時:∠BDE=∠B=48°,∠BED=84°,∠FDC=∠C=62°,∠DFC=56°;
③若BD=ED,則∠B=∠BED=48°,∴∠EDB=180°-48°-48°=84°,∴∠FDC=180°-∠EDF-∠BDE=180°-84°-70°=26°,∠DFC=180°-∠C-∠CDF=180°-62°-26°=92°,此時△DCF不是等腰三角形;
∴只有一種情況:∠BDE=∠B=48°,∠BED=84°,∠FDC=∠C=62°,∠DFC=56°.