【題目】在“世界家庭日”前夕,某校團(tuán)委隨機(jī)抽取了n名本校學(xué)生,對(duì)“世界家庭日”當(dāng)天所喜歡的家庭活動(dòng)方式進(jìn)行問卷調(diào)查.問卷中的家庭活動(dòng)方式包括:A.在家里聚餐; B.去影院看電影; C.到公園游玩; D.進(jìn)行其他活動(dòng)
每位學(xué)生在問卷調(diào)查時(shí)都按要求只選擇了其中一種喜歡的活動(dòng)方式,該校團(tuán)委收回全部問卷后,將收集到的數(shù)據(jù)整理并繪制成如圖所示的統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)求n的值;
(2)四種方式中最受學(xué)生喜歡的方式為__(用A、B、C、D作答);選擇該種方式的學(xué)生人數(shù)占被調(diào)查的學(xué)生人數(shù)的百分比為_____ .
(3)根據(jù)統(tǒng)計(jì)結(jié)果,估計(jì)該校1800名學(xué)生中喜歡C方式的學(xué)生比喜歡B方式的學(xué)生多的人數(shù).
【答案】
(1)
解:n=30+40+70+60=200.
(2)
解:∵C的學(xué)生人數(shù)最多,
∴四種方式中最受學(xué)生喜歡的方式為C,
×100%=35%,
故答案為:C,35%.
(3)
解:1800×=270(人),
答:該校1800名學(xué)生中喜歡C方式的學(xué)生比喜歡B方式的學(xué)生多的人數(shù)為270人.
【解析】(1)根據(jù)條形圖,把A,B,C,D的人數(shù)加起來,即可解答;
(2)C的學(xué)生人數(shù)最多,即為四種方式中最受學(xué)生喜歡的方式;用C的人數(shù)÷總?cè)藬?shù),即可得到百分比;
(3)分別計(jì)算出喜歡C方式的學(xué)生人數(shù)、喜歡B方式的學(xué)生的人數(shù),作差即可解答.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解條形統(tǒng)計(jì)圖(能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的切線,切點(diǎn)為B,連接AO,AO與⊙O交于點(diǎn)C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交AC、AD、AB于點(diǎn)E、O、F,則圖中全等三角形的對(duì)數(shù)是( 。
A.1對(duì)
B.2對(duì)
C.3對(duì)
D.4對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,半徑為R,圓心角為n°的扇形面積是S扇形=,由弧長(zhǎng)l=,得S扇形==R=lR.通過觀察,我們發(fā)現(xiàn)S扇形=lR類似于S三角形=×底×高.
類比扇形,我們探索扇環(huán)(如圖②,兩個(gè)同心圓圍成的圓環(huán)被扇形截得的一部分交作扇環(huán))的面積公式及其應(yīng)用.
(1)設(shè)扇環(huán)的面積為S扇環(huán) , 的長(zhǎng)為l1 , 的長(zhǎng)為l2 , 線段AD的長(zhǎng)為h(即兩個(gè)同心圓半徑R與r的差).類比S梯形=×(上底+下底)×高,用含l1 , l2 , h的代數(shù)式表示S扇環(huán) , 并證明;
(2)用一段長(zhǎng)為40m的籬笆圍成一個(gè)如圖②所示的扇環(huán)形花園,線段AD的長(zhǎng)h為多少時(shí),花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,已知AD>AB.在邊AD上取點(diǎn)E,使AE=AB,連結(jié)CE,過點(diǎn)E作EF⊥CE,與邊AB或其延長(zhǎng)線交于點(diǎn)F.
猜想:如圖①,當(dāng)點(diǎn)F在邊AB上時(shí),線段AF與DE的大小關(guān)系為______.
探究:如圖②,當(dāng)點(diǎn)F在邊AB的延長(zhǎng)線上時(shí),EF與邊BC交于點(diǎn)G.判斷線段AF與DE的大小關(guān)系,并加以證明.
應(yīng)用:如圖②,若AB=2,AD=5,利用探究得到的結(jié)論,求線段BG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點(diǎn)O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.
(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是“東方之星”救援打撈現(xiàn)場(chǎng)圖,小紅據(jù)此構(gòu)造出一個(gè)如圖2所示的數(shù)學(xué)模型,已知:A、B、D三點(diǎn)在同一水平線上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求點(diǎn)B到AC的距離.
(2)求線段CD的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把點(diǎn)P(﹣5,3)向右平移8個(gè)單位得到點(diǎn)P1 , 再將點(diǎn)P1繞原點(diǎn)旋轉(zhuǎn)90°得到點(diǎn)P2 , 則點(diǎn)P2的坐標(biāo)是( 。
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com