(2013•貴陽)已知:如圖,AB是⊙O的弦,⊙O的半徑為10,OE、OF分別交AB于點(diǎn)E、F,OF的延長線交⊙O于點(diǎn)D,且AE=BF,∠EOF=60°.
(1)求證:△OEF是等邊三角形;
(2)當(dāng)AE=OE時(shí),求陰影部分的面積.(結(jié)果保留根號和π)
分析:(1)作OC⊥AB于點(diǎn)C,由OC⊥AB可知AC=BC,再根據(jù)AE=BF可知EC=FC,因?yàn)镺C⊥EF,所以O(shè)E=OF,再由∠EOF=60°即可得出結(jié)論;
(2)在等邊△OEF中,因?yàn)椤螼EF=∠EOF=60°,AE=OE,所以∠A=∠AOE=30°,故∠AOF=90°,再由AO=10可求出OF的長,根據(jù)S陰影=S扇形AOD-S△AOF即可得出結(jié)論.
解答:(1)證明:作OC⊥AB于點(diǎn)C,
∵OC⊥AB,
∴AC=BC,
∵AE=BF,
∴EC=FC,
∵OC⊥EF,
∴OE=OF,
∵∠EOF=60°,
∴△OEF是等邊三角形;

(2)解:∵在等邊△OEF中,∠OEF=∠EOF=60°,AE=OE,
∴∠A=∠AOE=30°,
∴∠AOF=90°,
∵AO=10,
∴OF=
10
3
3
,
∴S△AOF=
1
2
×
10
3
3
×10=
50
3
3
,S扇形AOD=
90π
360
×102=25π,
∴S陰影=S扇形AOD-S△AOF=25π-
50
3
3
點(diǎn)評:本題考查的是垂徑定理,涉及到等邊三角形的判定與性質(zhì)、直角三角形的性質(zhì)及扇形的面積等知識,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)已知二次函數(shù)y=x2+2mx+2,當(dāng)x>2時(shí),y的值隨x值的增大而增大,則實(shí)數(shù)m的取值范圍是
m≥-2
m≥-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽模擬)如圖1,已知∠EOF,點(diǎn)B、C在射線OF上,四邊形ABCD是平行四邊形,AC、BD相交于點(diǎn)M,連接OM.
(1)當(dāng)OM⊥AC時(shí),求證:OA=OC.
(2)如圖2,當(dāng)∠EOF=45°時(shí),且四邊形ABCD是邊長為a的正方形時(shí),求OM的長.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)已知:如圖,在菱形ABCD中,F(xiàn)是BC上任意一點(diǎn),連接AF交對角線BD于點(diǎn)E,連接EC.
(1)求證:AE=EC;
(2)當(dāng)∠ABC=60°,∠CEF=60°時(shí),點(diǎn)F在線段BC上的什么位置?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•貴陽)已知:直線y=ax+b過拋物線y=-x2-2x+3的頂點(diǎn)P,如圖所示.
(1)頂點(diǎn)P的坐標(biāo)是
(-1,4)
(-1,4)

(2)若直線y=ax+b經(jīng)過另一點(diǎn)A(0,11),求出該直線的表達(dá)式;
(3)在(2)的條件下,若有一條直線y=mx+n與直線y=ax+b關(guān)于x軸成軸對稱,求直線y=mx+n與拋物線y=-x2-2x+3的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案