【題目】如圖,已知平行四邊形ABCD與平行四邊形DCFE的周長相等,且BAD=60°,CFE=110°,則下列結論:①四邊形ABFE為平行四邊形;②ADE是等腰三角形;③平行四邊形ABCD與平行四邊形DCFE全等;④DAE=25°.其中正確的結論是.__________(填正確結論的序號)
【答案】①②④.
【解析】
根據(jù)平行四邊形的對邊平行且相等即可證得AB∥CD且AB=CD,則四邊形ABFE是平行四邊形,根據(jù)平行四邊形的對邊相等以及對角相等即可得到△ADE是等腰三角形,依據(jù)等腰三角形的性質(zhì)即可得證.
∵ABCD中,AB∥CD且AB=CD,
同理CD∥EF且CD=EF.
∴AB∥EF且AB=EF,
∴四邊形ABFE是平行四邊形.
故①正確;
∵ABCD與DCFE的周長相等,且AB=CD=EF,
∴AD=AE,即△ADE是等腰三角形.
故②正確;
∵∠BAD=60°,平行四邊形ABCD中,AB∥CD,
∴∠ADC=180°-∠BAD=180°-60°=120°,
則ABCD與DCFE的角都不相等,故不全等.
故③錯誤;
∵DCFE中,∠CDE=∠CFE=110°,
∴∠ADE=360°-∠ADC-∠CDE=360°-120°-110°=130°,
又∵AD=DE,
∴∠DAE==25°.
故④正確.
故答案為:①②④.
科目:初中數(shù)學 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側面和2個正三角形底面組成,硬紙板如圖兩種方法裁剪(裁剪后邊角料不再利用)
A方法:剪6個側面; B方法:剪4個側面和5個底面。
現(xiàn)有38張硬紙板,裁剪時x張用A方法,其余用B方法。
(1)用x的代數(shù)式分別表示裁剪出的側面和底面的個數(shù);
(2)若裁剪出的側面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在中,平分(),為上一點,且于點.
(1)當,時,求的度數(shù);
(2)若,,請結合(1)的計算猜想、、之間的數(shù)量關系,直接寫出答案,不說明理由;(用含有、的式子表示)
(3)如圖②,當點在的延長線上時,其余條件不變,則(2)中的結論還成立嗎?若成立,請說明為什么;若不成立,請寫出成立的結論,并說明為什么.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將□ABCD的邊DC延長到點E,使CE=DC,連接AE,交BC于點F.
⑴求證:△ABF≌△ECF;⑵若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線AD對折,使它落在斜邊AB上,且與AE重合,則CD等于( )
A. 3cmB. 4cmC. 5cmD. 6cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明,如圖點D,E,F分別是三角形ABC的邊BC,CA,AB上的點,DE∥BA,DF∥CA.求證:∠FDE=∠A.
證明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E為BC邊上一點,且AB=AE.
(1)求證:△ABC≌△EAD;
(2)若∠B=65°,∠EAC=25°,求∠AED的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com