(2010•順義區(qū))已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個(gè)不同的交點(diǎn).
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫出一個(gè)最大的正方形,使得正方形的一邊在x軸上,其對(duì)邊的兩個(gè)端點(diǎn)在拋物線上,試求出這個(gè)最大正方形的邊長?

【答案】分析:(1)由拋物線y=(k-1)x2+2kx+k-2與x軸有兩個(gè)不同的交點(diǎn),根的判別式△>0,解得k的取值范圍.
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時(shí),可以解得k的整數(shù)值.
(3)設(shè)最大正方形ABCD的邊長為m,則B、C兩點(diǎn)的縱坐標(biāo)為-m,且由對(duì)稱性可知,B、C兩點(diǎn)關(guān)于拋物線對(duì)稱軸對(duì)稱,求出點(diǎn)C的坐標(biāo),C點(diǎn)代入拋物線,解得m.
解答:解:(1)△=4k2-4(k-1)(k-2)=12k-8,
依題意,得,
∴k的取值范圍是且k≠1,①

(2)解方程3x=kx-1,
,
∵方程3x=kx-1的解是負(fù)數(shù),
∴3-k>0.
∴k<3,②(4分)
綜合①②,可得k的取值范圍是且k≠1,k<3,再由k為整數(shù),可得k=2,
∴拋物線解析式為y=x2+4x.

(3)如圖,設(shè)最大正方形ABCD的邊長為m,則B、C兩點(diǎn)的縱坐標(biāo)為-m,
且由對(duì)稱性可知:B、C兩點(diǎn)關(guān)于拋物線對(duì)稱軸對(duì)稱,
∵拋物線的對(duì)稱軸為:x=-2,
∴點(diǎn)C的坐標(biāo)為(-2+,-m),
∵C點(diǎn)在拋物線上,

整理,得m2+4m-16=0,
(舍負(fù))

點(diǎn)評(píng):本題二次函數(shù)的綜合題,要求會(huì)求二次函數(shù)的解析式,會(huì)判定兩圖象交點(diǎn)個(gè)數(shù)和求拋物線對(duì)稱軸,本題步驟有點(diǎn)多,做題需要細(xì)心.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•順義區(qū)二模)在平面直角坐標(biāo)系xOy中,A、B為反比例函數(shù)y=
4
x
(x>0)的圖象上兩點(diǎn),A點(diǎn)的橫坐標(biāo)與B點(diǎn)的縱坐標(biāo)均為1,將y=
4
x
(x>0)的圖象繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,A點(diǎn)的對(duì)應(yīng)點(diǎn)為A′,B點(diǎn)的對(duì)應(yīng)點(diǎn)為B′.
(1)求旋轉(zhuǎn)后的圖象解析式;
(2)求A′、B′點(diǎn)的坐標(biāo);
(3)連接AB′、動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿線段AB'以每秒1個(gè)單位長度的速度向終點(diǎn)B′運(yùn)動(dòng);動(dòng)點(diǎn)N同時(shí)從B′點(diǎn)出發(fā)沿線段B′A′以每秒1個(gè)單位長度的速度向終點(diǎn)A′運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí)另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,試探究:是否存在使△MNB'為等腰直角三角形的t值,若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•順義區(qū))列方程或方程組解應(yīng)用題:
在“五一”期間,小明、小亮等同學(xué)隨家長一同到某公園游玩,下面是購買門票時(shí),小明與他爸爸的對(duì)話(如圖),試根據(jù)圖中的信息,解答下列問題:
(1)小明他們一共去了
8
8
個(gè)成人,
4
4
個(gè)學(xué)生.
(2)請(qǐng)你幫助小明算一算,購買
團(tuán)體票
團(tuán)體票
方式購票更省錢.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2010•順義區(qū))如圖,直線l1:y=kx+b平行于直線y=x-1,且與直線l2相交于點(diǎn)P(-1,0).
(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點(diǎn)A.一動(dòng)點(diǎn)C從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B1處后,改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A1處后,再沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B2處后,又改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A2處后,仍沿平行于x軸的方向運(yùn)動(dòng),…
照此規(guī)律運(yùn)動(dòng),動(dòng)點(diǎn)C依次經(jīng)過點(diǎn)B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求點(diǎn)B1,B2,A1,A2的坐標(biāo);
②請(qǐng)你通過歸納得出點(diǎn)An、Bn的坐標(biāo);并求當(dāng)動(dòng)點(diǎn)C到達(dá)An處時(shí),運(yùn)動(dòng)的總路徑的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市順義區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•順義區(qū))如圖,直線l1:y=kx+b平行于直線y=x-1,且與直線l2相交于點(diǎn)P(-1,0).
(1)求直線l1、l2的解析式;
(2)直線l1與y軸交于點(diǎn)A.一動(dòng)點(diǎn)C從點(diǎn)A出發(fā),先沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B1處后,改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A1處后,再沿平行于x軸的方向運(yùn)動(dòng),到達(dá)直線l2上的點(diǎn)B2處后,又改為垂直于x軸的方向運(yùn)動(dòng),到達(dá)直線l1上的點(diǎn)A2處后,仍沿平行于x軸的方向運(yùn)動(dòng),…
照此規(guī)律運(yùn)動(dòng),動(dòng)點(diǎn)C依次經(jīng)過點(diǎn)B1,A1,B2,A2,B3,A3,…,Bn,An,…
①求點(diǎn)B1,B2,A1,A2的坐標(biāo);
②請(qǐng)你通過歸納得出點(diǎn)An、Bn的坐標(biāo);并求當(dāng)動(dòng)點(diǎn)C到達(dá)An處時(shí),運(yùn)動(dòng)的總路徑的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市順義區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•順義區(qū))已知正比例函數(shù)y=kx(k≠0)與反比例函數(shù)的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)為(2,3).
(1)求正比例函數(shù)及反比例函數(shù)的解析式;
(2)在所給的平面直角坐標(biāo)系中畫出兩個(gè)函數(shù)的圖象,根據(jù)圖象直接寫出點(diǎn)B的坐標(biāo)及不等式的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案