【題目】如圖,等圓⊙O1 和⊙O2 相交于A,B兩點,⊙O2 經(jīng)過⊙O1 的圓心O1,兩圓的連心線交⊙O1于點M,交AB于點N,連接BM,已知AB=2.

求證:(1)BM是⊙O2的切線;

(2)求弧AM的長.

【答案】(1)見解析;(2).

【解析】

(1)連接O2B,由MO2是⊙O1的直徑,得出∠MBO2=90°從而得出結論:BM是⊙O2的切線;

(2)根據(jù)O1B=O2B=O1O2,則∠O1O2B=60°,再由已知得出BNO2B,從而計算出弧AM的長度.

1)連結O2B,

MO2是⊙O1的直徑,

∴∠MBO2=90°,

BM是⊙O2的切線;

(2)O1B=O2B=O1O2,

∴∠O1O2B=60°,

AB=2,

BN=

O2B=2,

.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(12分)某賓館準備購進一批換氣扇,從電器商場了解到:一臺A型換氣扇和三臺B型換氣扇共需275元;三臺A型換氣扇和二臺B型換氣扇共需300元.

(1)求一臺A型換氣扇和一臺B型換氣扇的售價各是多少元;

(2)若該賓館準備同時購進這兩種型號的換氣扇共40臺并且A型換氣扇的數(shù)量不多于B型換氣扇數(shù)量的3倍,請設計出最省錢的購買方案,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C,EF,B在同一直線上,點A,DBC異側,ABCDAEDF,AD

1)求證:AB=CD;

2)若ABCFB40°,求D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李明準備進行如下操作實驗,把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個正方形.

(1)要使這兩個正方形的面積之和等于58 cm2,李明應該怎么剪這根鐵絲?

(2)李明認為這兩個正方形的面積之和不可能等于48 cm2,你認為他的說法正確嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB12cmCAAB于點A,DBAB于點B,且AC4cm,點P從點B向點A運動,每秒鐘走1cm,點Q從點B向點D運動,每秒鐘走2cm,兩點同時出發(fā),運動幾秒鐘后,△CPA與△PQB全等?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的面積為S,作△ABC邊中線AC1,取AB的中點A1,連接A1C1得到第一個三角形△A1BC1,作△A1BC1中線A1C2,取A1B的中點A2,連接A1C2得到第二個三角形△A2BC2………,重復這樣的操作,則第2019個三角形△A2019BC2019的面積是_________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖(1),已知ABC,AB、AC為邊向ABC外作等邊三角形ABD和等邊三角形ACE,連接BE、CD.請你完成圖形,并證明:BE=CD;

2)如圖(2),已知ABC,ABAC為邊向外作正方形ABFD和正方形ACGE,連接BE、CD,BECD有什么數(shù)量關系?說明理由;

3)運用(1)(2)解答中所積累的經(jīng)驗和知識,完成下題:如圖(3),要測量河兩岸相對的兩點BE的距離,已經(jīng)測得∠ABC=45°,∠CAE=90°,AB=BC=1千米,AC=AE.BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是邊長為的正方形ABCD的對角線BD上的動點,過點P分別作PEBC于點E,PFDC于點F,連接AP并延長,交射線BC于點H,交射線DC于點M,連接EFAH于點G,當點PBD上運動時(不包括B、D兩點),以下結論中:①MF=MC;AHEF;AP2=PMPH;EF的最小值是.其中正確結論是( 。

A. ①③ B. ②③ C. ②③④ D. ②④

查看答案和解析>>

同步練習冊答案