如圖,⊙O的弦AB、CD交于點P,已知P是AB的中點,AB=8cm,PC=2cm,那么PD的長是


  1. A.
    32cm
  2. B.
    8cm
  3. C.
    6cm
  4. D.
    2cm
B
分析:根據(jù)相交弦定理“圓內(nèi)兩弦相交于圓內(nèi)一點,各弦被這點所分得的兩線段的長的乘積相等”進行計算.
解答:∵P是AB的中點,AB=8cm,
∴PA=PB=4cm,
由相交弦定理得:PA•PB=PC•PD,
∴DP===8cm
故選B.
點評:本題主要考查相交弦定理“圓內(nèi)兩弦相交于圓內(nèi)一點,各弦被這點所分得的兩線段的長的乘積相等”的應用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

13、如圖,⊙O的弦AB和CD相交于K,過弦AB、CD的兩端的切線分別相交于P、Q,求證:OK⊥PQ.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

64、如圖,⊙O的弦AB、半徑OC延長交于點D,BD=OA,若∠AOC=105°,求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的弦AB=10,OC⊥AB,且OD=12,則⊙O的半徑等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的弦AB垂直平分半徑OC,若AB=
6
,則⊙O的半徑為
2
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,⊙O的弦AB垂直于直徑MN,C為垂足,若OA=5cm,CN=2cm,則AB=
8cm
8cm

查看答案和解析>>

同步練習冊答案