如圖,在等腰直角△ABC中∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E.若AC=10cm,求△DEB的周長(zhǎng).

解:∵DE⊥AB,
∴∠C=∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
在△ACD和△AED中,
,
∴△ACD≌△AED(AAS),
∴AC=AE,CD=DE,
∴BD+DE=BD+CD=BC=AC=AE,
在Rt△ACB中,AB=AC=10
∴BD+DE+BE=AE+BE=AB=10,
所以,△DEB的周長(zhǎng)為10cm.
分析:先利用“角角邊”證明△ACD和△AED全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AC=AE,CD=DE,然后求出BD+DE=AE,再利用等腰直角三角形的斜邊等于直角邊的倍求出AB,然后求出△DEB的周長(zhǎng)=AB,代入數(shù)據(jù)即可得解.
點(diǎn)評(píng):本題主要考查了等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì),主要利用了等腰直角三角形的斜邊等于直角邊的倍,求出△ACD和△AED全等是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在等腰直角三角形ABC中,∠A=90°,P是△ABC內(nèi)一點(diǎn),PA=1,PB=3,PC=
7
,那么∠CPA=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,在等腰直角三角形ABC和DEC中,∠BCA=∠BCE=90°,點(diǎn)E在邊AB上,ED與AC交于點(diǎn)F,連接AD.
(1)求證:△BCE≌△ACD.
(2)求證:AB⊥AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•海滄區(qū)一模)如圖,在等腰直角三角形ABC中,AC=BC=2,D為AB上的動(dòng)點(diǎn)(不與A,B重合),過(guò)D作DE⊥AC于E,DF⊥BC于F,設(shè)AD的長(zhǎng)度為x,DE與DF的長(zhǎng)度和為y.則能表示y與x之間的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖①,在等腰直角三角板ABC中,斜邊BC為2個(gè)單位長(zhǎng)度,現(xiàn)把這塊三角板在平面直角坐標(biāo)系xOy中滑動(dòng),并使B、C兩點(diǎn)始終分別位于y軸、x軸的正半軸上,直角頂點(diǎn)A與原點(diǎn)O位于BC兩側(cè).
(1)取BC中點(diǎn)D,問(wèn)OD+DA是否發(fā)生改變,若會(huì),說(shuō)明理由;若不會(huì),求出OD+DA;
(2)你認(rèn)為OA的長(zhǎng)度是否會(huì)發(fā)生變化?若變化,那么OA最長(zhǎng)是多少?OA最長(zhǎng)時(shí)四邊形OBAC是怎樣的四邊形?并說(shuō)明理由;
(3)填空:當(dāng)OA最長(zhǎng)時(shí)A的坐標(biāo)(
2
2
,
2
2
),直線OA的解析式
y=x
y=x

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰直角△ABC的斜邊AB上取兩點(diǎn)M、N(不與A、B重合)使∠MCN=45°,記AM=m,MN=x,NB=n,試判斷以x、m、n為邊長(zhǎng)的三角形的形狀,并給予說(shuō)明.

查看答案和解析>>

同步練習(xí)冊(cè)答案