如圖1,在△ABC中,AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點(diǎn).將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<180°),得到△AB′C′(如圖2).
(1)探究DB′與EC′的數(shù)量關(guān)系,并給予證明;
(2)當(dāng)DB′∥AE時(shí),試求旋轉(zhuǎn)角α的度數(shù).

【答案】分析:(1)由于AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點(diǎn),則AD=AE=AB,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠B′AD=∠C′AE=α,AB′=AB,AC′=AC,則AB′=AC′,根據(jù)三角形全等的判定方法可得到△B′AD≌△C′AE(SAS),則有DB′=EC′;
(2)由于DB′∥AE,根據(jù)平行線的性質(zhì)得到∠B′DA=∠DAE=90°,又因?yàn)锳D=AB=AB′,根據(jù)含30°的直角三角形三邊的關(guān)系得到∠AB′D=30°,利用互余即可得到旋轉(zhuǎn)角∠B′AD的度數(shù).
解答:解:(1)DB′=EC′.理由如下:
∵AB=AC,∠BAC=90°,D、E分別是AB、AC邊的中點(diǎn),
∴AD=AE=AB,
∵△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<180°),得到△AB′C′,
∴∠B′AD=∠C′AE=α,AB′=AB,AC′=AC,
∴AB′=AC′,
在△B′AD和△C′AE中,
,
∴△B′AD≌△C′AE(SAS),
∴DB′=EC′;
(2)∵DB′∥AE,
∴∠B′DA=∠DAE=90°,
在Rt△B′DA中,
∵AD=AB=AB′,
∴∠AB′D=30°,
∴∠B′AD=90°-30°=60°,
即旋轉(zhuǎn)角α的度數(shù)為60°.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角都等于旋轉(zhuǎn)角.也考查了等腰三角形的性質(zhì)、全等三角形的判定與性質(zhì)以及含30°的直角三角形三邊的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖1,在△ABC中,AB=AC,點(diǎn)D是邊BC的中點(diǎn).以BD為直徑作圓O,交邊AB于點(diǎn)P,連接PC,交AD于點(diǎn)E.
(1)求證:AD是圓O的切線;
(2)當(dāng)∠BAC=90°時(shí),求證:
PE
CE
=
1
2
;
(3)如圖2,當(dāng)PC是圓O的切線,E為AD中點(diǎn),BC=8,求AD的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們給出如下定義:有一組相鄰內(nèi)角相等的四邊形叫做等鄰角四邊形.請(qǐng)解答下列問(wèn)題:
(1)寫出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點(diǎn)D在BC上,且CD=CA,點(diǎn)E、F分別為BC、AD的中點(diǎn),連接EF并延長(zhǎng)交AB于點(diǎn)G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點(diǎn)D在△ABC的內(nèi)部,(2)中的其他條件不變,EF與CD交于點(diǎn)H,圖中是否存在等鄰角四邊形,若存在,指出是哪個(gè)四邊形,不必證明;若不存在,請(qǐng)說(shuō)精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關(guān)系,并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點(diǎn)D是垂足,點(diǎn)E是BC的中點(diǎn),規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點(diǎn)O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當(dāng)∠ABC=90°時(shí),且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案