如圖,已知四邊形ABCD的四個頂點的坐標(biāo)分別為A(0,0),B(9,0),C(7,5),D(2,7),將該四邊形各頂點的橫坐標(biāo)都增加2,縱坐標(biāo)都增加3,其面積為( 。
分析:作DE⊥x軸于E,CF⊥x軸于F,則E(2,0),F(xiàn)(7,0),然后計算出四邊形DEFC和△DEO,△CFB的面積,求和即可.
解答:解:將四邊形各頂點的橫坐標(biāo)都增加2,縱坐標(biāo)都增加3,等于把四邊形作了平移,面積不會改變.所以只要求四邊形ABCD的面積.
作DE⊥x軸于E,CF⊥x軸于F,則E(2,0),F(xiàn)(7,0),
∴AE=2,EF=5,BF=2,DE=7,CF=5,
∴S四邊形ABCD=S△DAF+S梯形DEFC+S△CBF
=
1
2
×2×7+
1
2
×(7+5)×5+
1
2
×2×5
=7+30+5
=42(面積單位).
故選:B.
點評:此題主要考查了坐標(biāo)與圖形的變化,在平面直角坐標(biāo)系內(nèi),把一個圖形各個點的橫坐標(biāo)都加上(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標(biāo)都加(或減去)一個整數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度.圖形的大小和面積均不發(fā)生改變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點,AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點E,CF⊥AD,垂足為點F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊答案