【題目】如圖,有三張背面完全相同的紙牌A,B,C,其中正面分別畫有三種不同的幾何圖形,小華將這3張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸出一張,請你用畫樹狀圖或列表的方法,求摸出的兩張紙牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的概率.

【答案】解:畫樹狀圖為:
共有9種等可能的結(jié)果數(shù),其中摸出的兩張紙牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的結(jié)果數(shù)為,
所以摸出的兩張紙牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的概率=
【解析】畫樹狀圖為展示所有9種等可能的結(jié)果數(shù),再找出摸出的兩張紙牌面上所畫幾何圖形既是軸對稱圖形又是中心對稱圖形的結(jié)果數(shù),然后根據(jù)概率公式求解.
【考點精析】通過靈活運用列表法與樹狀圖法,掌握當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率即可以解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把直角△ABC的斜邊AC放在定直線l上,按順時針的方向在直線l上轉(zhuǎn)動兩次,使它轉(zhuǎn)到△A2B1C2的位置,設(shè)AB= ,BC=1,則頂點A運動到點A2的位置時,點A所經(jīng)過的路線為(
A.( + )π
B.( + )π
C.2π
D. π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,下列說法中不正確的是(
A.DE= BC
B.
C.△ADE∽△ABC
D.SADE:SABC=1:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是BC邊上的一動點(不與B、C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α= ,有以下的結(jié)論:①△DBE∽△ACD;②△ADE∽△ACD;③△BDE為直角三角形時,BD為8或 ;④0<BE≤5,其中正確的結(jié)論是(填入正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知點A(﹣2,0),B(0,4),C(0,3),過點C作直線交x軸于點D,使得以D,O,C為頂點的三角形與△AOB相似,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,過點D作DE⊥AB于點E.
(1)求證:DE是⊙O的切線;
(2)若AC=10,BC=16,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD、BE是兩條中線,則SABP:SEDP=(
A.1:2
B.1:3
C.1:4
D.2:3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】類比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學學習和研究中經(jīng)常用到,如下是一個案例,請補充完整. 原題:如圖1,在△ABC中,點D、E、Q分別在AB、AC、BC上,且DE∥BC,AQ交DE于點P,求證:

(1)嘗試探究:在圖1中,由DP∥BQ得△ADP△ABQ(填“≌”或“∽”),則 = , 同理可得 = ,從而
(2)類比延伸:如圖2,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG、AF分別交DE于M、N兩點,若AB=AC=1,則MN的長為
(3)拓展遷移:如圖3,在△ABC中,∠BAC=90°,正方形DEFG的四個頂點在△ABC的邊上,連接AG、AF分別交于DE于M、N兩點,AB<AC,求證:MN2=DMEN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為(
A.2
B.8
C.2
D.2

查看答案和解析>>

同步練習冊答案