如圖,拋物線y=ax2+bx+c的頂點M的坐標是(1,3),且與y軸相交于點C(0,2),P(1,1)是拋物線對稱軸上的一點.請回答下列問題:
(1)寫出拋物線的解析式______;
(2)點Q是拋物線上的一點,且使△CPQ的面積等于△CMP的面積,則所有滿足條件的點Q的個數(shù)為:______.

解:(1)設拋物線的解析式為y=a(x-1)2+3,
把C(0,2)代入得,a+3=2,解得a=-1,
∴拋物線的解析式為y=-(x-1)2+3=-x2+2x+2.
故答案為y=-x2+2x+2.

(2)∵△CPQ的面積等于△CMP的面積,
∴點Q到CP的距離等于點M到CP的距離,即點Q在與PC平行且到CP的距離等于點M到CP的距離的兩條平行直線上,如圖,
設直線PC的解析式為y=kx+b,
把C(0,2),P(1,1)代入得,k+2=1,b=2,解得k=-1,
∴直線PC的解析式為y=-x+2,
又∵MQ1∥PC,
∴設直線MQ1的解析式為y=-x+b,
把M(1,3)代入得b=4,
∴直線MQ1的解析式為y=-x+4,
聯(lián)立,解得,,
∴Q1的坐標為(2,2);
直線MQ1y=-x+4與y軸的交點N的坐標為(0,4),所以把直線MQ1向下平移4個單位后與PC的距離不變,此時平移后的直線的解析式為y=-x,設它與拋物線的交
點為Q2,Q3,如圖,
聯(lián)立,解得,
∴Q2的坐標為(,),Q3的坐標為(,);
所以滿足條件的點Q的個數(shù)有三個.
故答案為y=-x2+2x+2;3.
分析:(1)設拋物線的解析式為y=a(x-1)2+3,然后把C(0,2)代入計算出a的值即可;
(2)通過△CPQ的面積等于△CMP的面積可得點Q在與PC平行且到CP的距離等于點M到CP的距離的兩條平行直線上,先利用待定系數(shù)法確定直線PC的解析式為y=-x+2,
根據(jù)兩直線平行則k相等得到直線MQ1的解析式為y=-x+4,把M(1,3)代入確定直線MQ1的解析式為y=-x+4,然后把y=-x2+2x+2和y=-x+4聯(lián)立起來解方程組即可得到它們交點的坐標,即得到Q1的坐標;再直線MQ1向下平移4個單位后與PC的距離不變,此時平移后的直線的解析式為y=-x,利用同樣的方法可求出直線y=-x與拋物線的交點坐標即Q2的坐標,Q3的坐標.
點評:本題考查了解二次函數(shù)綜合題的方法:先合理設解析式,再利用待定系數(shù)法確定解析式,然后利用二次函數(shù)的圖象和性質解決其他問題.也考查了兩直線平行k相等的性質以及把求兩函數(shù)圖象的交點坐標轉化為解方程組的問題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經過點P(-
1
2
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y1=-ax2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為xA,xB,若在x軸上有一動點Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負半軸于點A,交x軸正半軸于點B,交y軸正半軸于點D,精英家教網(wǎng)O為坐標原點,拋物線上一點C的橫坐標為1.
(1)求A,B兩點的坐標;
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線的頂點為點D,與y軸相交于點A,直線y=ax+3與y軸也交于點A,矩形ABCO的頂點B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對稱軸;
(2)⊙P是經過A、B兩點的一個動圓,當⊙P與y軸相交,且在y軸上兩交點的距離為4時,求圓心P的坐標;
(3)若線段DO與AB交于點E,以點D、A、E為頂點的三角形是否有可能與以點D、O、A為頂點的三角形相似,如果有可能,請求出點D坐標及拋物線解析式;如果不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點C(0,-2),精英家教網(wǎng)與x軸交于點A、B,點A的坐標為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動點,N是線段OC上一動點,且ON=2OM,分別連接MC、MN.當△MNC的面積最大時,求點M、N的坐標;
(3)若平行于x軸的動直線與該拋物線交于點P,與線段AC交于點F,點D的坐標為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案