【題目】如圖,△ABC中,∠ACB=90°,AC=BC,點EAC上一點,連接BE

(1)若CB=4,BE=5,求AE的長;

(2)如圖2,點D是線段BE延長線上一點,過點AAFBD于點F,連接CD、CF,當AF=DF時,求證:DC=BC;

小潔在遇到此問題時不知道怎么下手,秦老師提示他可以過點CCHCF,交DB于點H,先證明△AFCBHC,然后繼續(xù)思考,并鼓勵小潔把證明過程寫出來.請你幫助小潔完成這個問題的證明過程.

【答案】(1)1;(2)詳見解析.

【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)求出ACBC的長,由勾股定理求出CE的長,再根據(jù)AE=AC-CE即可求出AE的長;

(2)過點CCMCFBD于點M,先通過證ACF≌△BCM,得出FC=MC,∠CFM=45°,進而得出AFC=∠DFC,結(jié)合已知條件可證ACF≌△DCF,從而可得AC=DC,通過等量代換可得DC=BC.

(1)在ABC中,

CE==3

AE=AC-CE=4-3=1.

(2)如圖,過點CCMCFBD于點M.

∴∠FCM=90°,

∵∠ACB=90°,

∴∠FCA=∠MCB,

AFBD

∴∠AFB=90°,

∴∠AFE=∠ACB,

∵∠AEF=∠BEC

∴∠CAF=∠CBM,

ACFBCM中,

∵∠FCA=∠MCB,

AC=BC,

CAF=∠CBM

∴△ACF≌△BCM

FC=MC,

∵∠FCM=90°,

∴∠CFM=∠CMF=45°,

∴∠AFC=90°+45°=135°,∠DFC=180°-45°=135°,

∴∠AFC=∠DFC.

ACFDCF中,

AF=DF,

AFC=DFC,

CF=CF,

∴△ACF≌△DCF,

AC=DC

AC=BC,

DC=BC.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的弦,半徑OD⊥BC,垂足為E,若BC= ,DE=3.

求:
(1)⊙O的半徑;
(2)弦AC的長;
(3)陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩根筆直的細木條用圖釘固定并平行擺放,將一根橡皮筋拉直后用圖有分別周定在上,橡皮筋的兩端點分別記為點,點

1)圖1中,點上,若,則___________;

2為橡皮筋上一點,,用橡皮筋的彈性拉動橡皮筋,使三點不在同一直線,后用圖固定點

①如圖2,若點在兩根細木條所在直線之間,且,試判斷線段所在直線的位置關(guān)系,并說明理由;

②如圖3,若點在兩根細木條所在直線的同側(cè),且,,試求的度數(shù);

3)如圖4,為AB上兩點,拉動橡皮筋并固定,若,則____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某日王老師佩戴運動手環(huán)進行快走鍛煉,兩次鍛煉后數(shù)據(jù)如表.與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的3倍.設(shè)王老師第二次鍛煉時平均步長減少的百分率為x(0<x<0.5).

項目

第一次鍛煉

第二次鍛煉

步數(shù)(步)

10000

平均步長(米/步)

0.6

距離(米)

6000

7020

注:步數(shù)×平均步長=距離.
(1)根據(jù)題意完成表格填空;
(2)求x;
(3)王老師發(fā)現(xiàn)好友中步數(shù)排名第一為24000步,因此在兩次鍛煉結(jié)束后又走了500米,使得總步數(shù)恰好為24000步,求王老師這500米的平均步長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖①,在平面直角坐標系xOy中,A(0,5),C( ,0),AOCD為矩形,AE垂直于對角線OD于E,點F是點E關(guān)于y軸的對稱點,連AF、OF.

(1)求AF和OF的長;
(2)如圖②,將△OAF繞點O順時針旋轉(zhuǎn)一個角α(0°<α<180°),記旋轉(zhuǎn)中的△OAF為△OA′F′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與線段AD交于點P,與線段OD交于點Q,是否存在這樣的P、Q兩點,使△DPQ為等腰三角形?若存在,求出此時點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的外角∠ACD的平分線CP與∠ABC平分線BP交于點P,若∠BPC=40°,則∠CAP的度數(shù)是(

A. 30°; B. 40° C. 50°; D. 60°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①是一個長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個“回形”正方形(如圖②).

1)圖②中的陰影部分的面積為   

2)觀察圖②請你寫出 a+b2、(ab2ab之間的等量關(guān)系是   

3)根據(jù)(2)中的結(jié)論,若,則(p+q2   

4)實際上有許多代數(shù)恒等式可以用圖形的面積來表示.如圖③,它表示了   

5)試畫出一個幾何圖形,使它的面積能表示(2a+b)(a+2b)=2a2+5ab+2b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

同步練習冊答案