不等于0的三個數(shù)a、b、c滿足數(shù)學(xué)公式,求證:a、b、c中至少有兩個互為相反數(shù).

證明:∵

bc(a+b+c)+ac(a+b+c)+ab(a+b+c)=abc
∴(b+c)a2+(2bc+c2+b2)a+bc2+b2c=0
即(a2b+ab2)+(a2c+ac2)+(abc+bc2)+(abc+b2c)=0,
ab(a+b)+ac(a+c)+bc(a+c)+bc(a+b)=0,
(a+b)(ab+bc)+(a+c)(ac+bc)=0,
b(a+b)(a+c)+c(a+c)(a+b)=0,
∴(b+c)(a+b)(a+c)=0
∴b=-c或a=-b或a=-c.
即a、b、c中至少有兩個互為相反數(shù).
分析:直接通分,將分式等式轉(zhuǎn)化為整式等式,再因式分解得到(b+c)(a+b)(a+c)=0,可知其中至少有一個因式為0.
點評:本題考查了分式加減運算的運用,先通分,去分母,將分式等式轉(zhuǎn)化為整式等式,再運用因式分解的知識解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1)在2004年6月的日歷中(見圖),任意圈出一豎列上相鄰的三個數(shù),設(shè)中間的一個為a,則用含a的代數(shù)式表示這三個數(shù)(從小到大排列)分別是
 

(2)連續(xù)的自然數(shù)1至2004按圖中的方式派成一個長方形陣列,用一個正方形框出16個數(shù)(如圖)
①圖中框出的這16個數(shù)之和是
 
;
②在上圖中,要使一個正方形框出的16個數(shù)之和分別等于2000、2004,是否可能?若不可能,試說明理由.若有可能,請求出該正方形框出的16個數(shù)中的最小數(shù)與最大數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

不等于0的三個數(shù)a、b、c滿足
1
a
+
1
b
+
1
c
=
1
a+b+c
,求證:a、b、c中至少有兩個互為相反數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下面是2006年12月的日歷,仔細(xì)觀察,你能發(fā)現(xiàn)其中有何規(guī)律嗎?
(1)現(xiàn)任意圈出一豎列上相鄰的三個數(shù),設(shè)中間的一個為a,則用含a的代數(shù)式表示這三個數(shù)(從小到大排列)分別是
a-7,a,a+7
a-7,a,a+7

(2)用正方形任意框出4個數(shù),設(shè)最小的一個為a,則這4個數(shù)的和為
4a+16
4a+16

(3)現(xiàn)將連續(xù)自然數(shù)1至2008按圖中的方式排成一個長方形陣列,用一個正方形框出16個數(shù),如圖
①圖中框出的這16個數(shù)的和為
352
352
;
②圖中要使一個正方形框出的16個數(shù)之和分別等于2000,2006,是否可能?若不可能,試說明理由;若有可能,請求出該正方形框出的16個數(shù)中的最小數(shù)和最大數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在2006年元月的日歷中(見下圖1),任意圈出一豎列上相鄰的三個數(shù),設(shè)中間一個數(shù)為a,則用a的代數(shù)式表示這三個數(shù)(從小到大排列)分別是
a-7,a,a+7
a-7,a,a+7


(2)現(xiàn)將連續(xù)的自然數(shù)1至2006按圖2的方式排成一個長方形陳列,用一個正方形框出9個數(shù)(見右圖2).
①圖2中框出的這9個數(shù)的和是
162
162

②有同學(xué)說:仿照①,圖2中任意框出的9個數(shù)的和一定是中間一個數(shù)的9倍.你同意這種說法嗎?為什么?
③在圖2中,要使一個正方形框出的9個數(shù)的和分別等于2005,2007,你認(rèn)為是否可能?如果有可能,請求出該正方形框出的9個數(shù)中的最大數(shù)和最小數(shù);如果不可能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案