8、如圖,已知△ABC中,AC+BC=24,AO,BO分別是角平分線,且MN∥BA,分別交AC于N,BC于M,則△CMN的周長(zhǎng)為( 。
分析:由AO,BO分別是角平分線求得∠1=∠2,,∠3=∠4,利用平行線性質(zhì)求得,∠1=∠6,∠3=∠5,利用等量代換求得∠2=∠6,,∠4=∠5,即可解題.
解答:解:由AO,BO分別是角平分線得∠1=∠2,∠3=∠4,
又∵M(jìn)N∥BA,∴∠1=∠6,∠3=∠5,
∴∠2=∠6,,∠4=∠5,
∴AN=NO,BM=OM.
∵AC+BC=24,∴AC+BC=AN+NC+BM+MC=24,
即MN+MC+NC=24,也就是△CMN的周長(zhǎng)是24.
故選B.
點(diǎn)評(píng):此題考查學(xué)生對(duì)等腰三角形的判定與性質(zhì)和平行線行至的理解和掌握,此題主要求得△ANO△BMO是等腰三角形,這是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案