26、如圖:AB∥CD,直線(xiàn)l交AB、CD分別于點(diǎn)E、F,點(diǎn)M在EF上,N是直線(xiàn)CD上的一個(gè)動(dòng)點(diǎn)(點(diǎn)N不與F重合)
(1)當(dāng)點(diǎn)N在射線(xiàn)FC上運(yùn)動(dòng)時(shí),∠FMN+∠FNM=∠AEF,說(shuō)明理由;
(2)當(dāng)點(diǎn)N在射線(xiàn)FD上運(yùn)動(dòng)時(shí),∠FMN+∠FNM與∠AEF有什么關(guān)系并說(shuō)明理由.
分析:(1)利用兩直線(xiàn)平行,同旁?xún)?nèi)角互補(bǔ)和三角形的內(nèi)角和為180度,易得∠FMN+∠FNM=∠AEF;
(2)根據(jù)兩直線(xiàn)平行,內(nèi)錯(cuò)角相等和三角形的內(nèi)角和為180度,易得∠FMN+∠FNM+∠AEF=180°.
解答:解:(1)∵AB∥CD,
∴∠AEF+∠MFN=180°.
∵∠MFN+∠FMN+∠FNM=180°,
∴∠FMN+∠FNM=∠AEF.
(2)∠FMN+∠FNM+∠AEF=180°.
理由:∵AB∥CD,
∴∠AEF=∠MFN.
∵∠MFN+∠FMN+∠FNM=180°,
∴∠FMN+∠FNM+∠AEF=180°.
點(diǎn)評(píng):本題考查了平行線(xiàn)的性質(zhì)和三角形的內(nèi)角和定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰梯形ABCD中,AB∥DC,∠A=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜邊MN=10cm,A點(diǎn)與N點(diǎn)重合,MN和AB在一條直線(xiàn)上,設(shè)等腰梯形ABCD不動(dòng),等腰直角三角形PMN沿AB所在直線(xiàn)以1cm/s的速度向右移動(dòng),直到點(diǎn)N與點(diǎn)B重合為止.
(1)等腰直角三角形PMN在整個(gè)移動(dòng)過(guò)程中與等腰梯形ABCD重疊部分的形狀由
 
形變化為
 
形;
(2)設(shè)當(dāng)?shù)妊苯侨切蜳MN移動(dòng)x(s)時(shí),等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積為y(cm2),求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x=4(s)時(shí),求等腰直角三角形PMN與等腰梯形ABCD重疊部分的面積.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在舞臺(tái)上有兩根豎直放置的鐵桿,其中鐵桿AB長(zhǎng)1m,CD長(zhǎng)2m,兩根鐵桿之間的距離為3m,現(xiàn)在B、D之間拉起一根鋼索,雜技演員在上面表演走鋼絲,為了描述演員的位置,小明以A點(diǎn)為坐標(biāo)原點(diǎn),建立了如圖所示的平面直角坐標(biāo)系,演員的位置為點(diǎn)M,設(shè)其精英家教網(wǎng)橫坐標(biāo)為x,縱坐標(biāo)為y.
(1)寫(xiě)出線(xiàn)段BD的函數(shù)關(guān)系式;
(2)為了保護(hù)演員的安全,過(guò)D點(diǎn)拉了一根與地面平行的鋼索DE,在上面掛上了一條保險(xiǎn)鋼絲MN,MN隨演員的移動(dòng)而移動(dòng),并始終垂直于地面,其長(zhǎng)度自動(dòng)調(diào)整,設(shè)保險(xiǎn)鋼絲的長(zhǎng)度為w,求w與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,將網(wǎng)格中的三條線(xiàn)段AB、CD、EF沿網(wǎng)格線(xiàn)(水平和鉛直方向)平移,使它們首尾相接構(gòu)成三角形,至少需要移動(dòng)
7
7
格.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應(yīng)性考試數(shù)學(xué)試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點(diǎn)C,交AB的延長(zhǎng)線(xiàn)于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:初中數(shù)學(xué)解題思路與方法 題型:047

已知如圖,AB是半圓直經(jīng),△ACD內(nèi)接于半⊙O,CE⊥AB于E,延長(zhǎng)AD交EC的延長(zhǎng)線(xiàn)于F,求證:AC·CD=AD·FC.

查看答案和解析>>

同步練習(xí)冊(cè)答案