【題目】如圖1,拋物線的頂點(diǎn)為點(diǎn),與軸的負(fù)半軸交于點(diǎn),直線交拋物線W于另一點(diǎn),點(diǎn)的坐標(biāo)為.
(1)求直線的解析式;
(2)過點(diǎn)作軸,交軸于點(diǎn),若平分,求拋物線W的解析式;
(3)若,將拋物線W向下平移個(gè)單位得到拋物線,如圖2,記拋物線的頂點(diǎn)為,與軸負(fù)半軸的交點(diǎn)為,與射線的交點(diǎn)為.問:在平移的過程中,是否恒為定值?若是,請求出的值;若不是,請說明理由.
【答案】(1);(2);(3)恒為定值.
【解析】
(1)由拋物線解析式可得頂點(diǎn)A坐標(biāo)為(0,-2),利用待定系數(shù)法即可得直線AB解析式;
(2)如圖,過點(diǎn)作于,根據(jù)角平分線的性質(zhì)可得BE=BN,由∠BND=∠CED=90°,∠BND=∠CDE可證明,設(shè)BE=x,BD=y,根據(jù)相似三角形的性質(zhì)可得CE=2x,CD=2y,根據(jù)勾股定理由得y與x的關(guān)系式,即可用含x的代數(shù)式表示出C、D坐標(biāo),代入y=ax2-2可得關(guān)于x、a的方程組,解方程組求出a值即可得答案;
(3)過點(diǎn)作于點(diǎn),根據(jù)平移規(guī)律可得拋物線W1的解析式為y=x2-2-m,設(shè)點(diǎn)的坐標(biāo)為(t,0)(t<0),代入y=x2-2-m可得2+m=t2,即可的W1的解析式為y=x2-t2,聯(lián)立直線BC解析式可用含t的代數(shù)式表示出點(diǎn)C1的坐標(biāo),即可得,可得∠,根據(jù)拋物線W的解析式可得點(diǎn)D坐標(biāo),聯(lián)立直線BC與拋物線W的解析式可得點(diǎn)C、A坐標(biāo),即可求出CG、DG的長,可得CG=DG,∠CDG=∠,即可證明,可得,,由∠CDG=45°可得BF=DF,根據(jù)等腰三角形的性質(zhì)可求出DF的長,利用勾股定理可求出CD的長,即可求出CF的長,根據(jù)三角函數(shù)的定義即可得答案.
(1)∵拋物線W:的頂點(diǎn)為點(diǎn),
∴點(diǎn),
設(shè)直線解析式為,
∵B(1,0),
∴,
解得:,
∴拋物線解析式為:.
(2)如圖,過點(diǎn)作于,
∵平分,,
∴,
∵,
∴,
∴,
∴,
∵,
∴,
設(shè),則,
∵,
∴,
∴,
∴,
∴點(diǎn),點(diǎn),
∴點(diǎn),點(diǎn)是拋物線W:上的點(diǎn),
∴,
∵x>0,
∴,
解得:(舍去),,
∴,
∴,
∴拋物線解析式為:.
(3)恒為定值,理由如下:
如圖,過點(diǎn)作軸于H,過點(diǎn)作軸G,過點(diǎn)作于點(diǎn),
∵a=,
∴拋物線W的解析式為y=x2-2,
∵將拋物線W向下平移m個(gè)單位,得到拋物線,
∴拋物線的解析式為:,
設(shè)點(diǎn)的坐標(biāo)為,
∴,
∴,
∴拋物線的解析式為:,
∵拋物線與射線的交點(diǎn)為,
∴,
解得:,(不合題意舍去),
∴點(diǎn)的坐標(biāo),
∴,
∴,
∴,且軸,
,
∵與軸交于點(diǎn),
∴點(diǎn),
∵與交于點(diǎn),點(diǎn),
∴,
解得:或,
∴點(diǎn),A(0,-2),
∴,
∴,且軸,
∴,
∴,
∴,
∴,
∵,
∴,
∴,
∴,
∵點(diǎn),點(diǎn),
∴,
∴,
∴,
∴恒為定值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題:如圖1,五環(huán)圖案內(nèi)寫有5個(gè)正整數(shù),請對5個(gè)整數(shù)作規(guī)律探索,找出同時(shí)滿足以下3個(gè)條件的數(shù);①是三個(gè)連續(xù)偶數(shù);②是兩個(gè)連續(xù)奇數(shù);③滿足.嘗試: 取,如圖2,,5個(gè)正整數(shù)滿足要求;
(1)取,能寫出滿足條件的5個(gè)正整數(shù)嗎?如果能,寫出的值;如果不能,說明理由.
(2)取,能寫出滿足條件的5個(gè)正整數(shù)嗎?如果能,寫出的值;如果不能,說明理由.
(3)猜想: 若5個(gè)正整數(shù)能滿足上述三個(gè)要求,偶數(shù)具備怎樣的條件?
(4)概括: 現(xiàn)有5個(gè)正整數(shù)滿足問題中的三個(gè)條件,請用含的代數(shù)式表示(設(shè)為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線的頂點(diǎn)為C(1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).
(1)求拋物線的解析式;
(2)如圖2,點(diǎn)E是BD上方拋物線上的一點(diǎn),連接AE交DB于點(diǎn)F,若AF=2EF,求出點(diǎn)E的坐標(biāo).
(3)如圖3,點(diǎn)M的坐標(biāo)為(,0),點(diǎn)P是對稱軸左側(cè)拋物線上的一點(diǎn),連接MP,將MP沿MD折疊,若點(diǎn)P恰好落在拋物線的對稱軸CE上,請求出點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一張矩形紙片ABCD,AB=4,BC=8,點(diǎn)M,N分別在矩形的邊AD,BC上,將矩形紙片沿直線MN折疊,使點(diǎn)C落在矩形的邊AD上,記為點(diǎn)P,點(diǎn)D落在G處,連接PC,交MN丁點(diǎn)Q,連接CM.
(1)求證:PM=PN;
(2)當(dāng)P,A重合時(shí),求MN的值;
(3)若△PQM的面積為S,求S的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校一面墻前有一塊空地,校方準(zhǔn)備用長的柵欄()圍成一個(gè)一面靠墻的長方形花圍,再將長方形分割成六塊(如圖所示) ,已知,,,設(shè).
(1)用含的代數(shù)式表示: ; .
(2)當(dāng)長方形的面積等于時(shí),求的長.
(3)若在如圖的甲區(qū)域種植花卉.乙區(qū)域種柏草坪,種柏花卉的成本為每平方米100元,種被草坪的成本為每平方米50元,若種植花卉與草坪的總費(fèi)用超過6300元,求花圍的寬的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)批發(fā)店銷售同一種蘋果,在甲批發(fā)店,不論一次購買數(shù)量是多少,價(jià)格均為6元/.在乙批發(fā)店,一次購買數(shù)量不超過時(shí),價(jià)格為7元/;一次購買數(shù)量超過時(shí),其中有的價(jià)格仍為7元/,超過部分的價(jià)格為5元/.設(shè)小王在同一個(gè)批發(fā)店一次購買蘋果的數(shù)量為.
(Ⅰ)根據(jù)題意填空:
①若一次購買數(shù)量為時(shí),在甲批發(fā)店的花費(fèi)為________元,在乙批發(fā)店的花費(fèi)為________元;
②若一次購買數(shù)量為時(shí),在甲批發(fā)店的花費(fèi)為________元,在乙批發(fā)店的花費(fèi)為________元;
(Ⅱ)設(shè)在甲批發(fā)店花費(fèi)元,在乙批發(fā)店花費(fèi)元,分別求,關(guān)于的函數(shù)解析式;
(Ⅲ)根據(jù)題意填空:
①若小王在甲批發(fā)店和在乙批發(fā)店一次購買蘋果的數(shù)量相同,且花費(fèi)相同,則他在同一個(gè)批發(fā)店一次購買蘋果的數(shù)量為_________;
②若小王在同一個(gè)批發(fā)店一次購買蘋果的數(shù)量為,則他在甲、乙兩個(gè)批發(fā)店中的________批發(fā)店購買花費(fèi)少;
③若小王在同一個(gè)批發(fā)店一次購買蘋果花費(fèi)了260元,則他在甲、乙兩個(gè)批發(fā)店中的_________批發(fā)店購買數(shù)量多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綠色出行是對環(huán)境影響最小的出行方式,“共享單車”已成為北京的一道靚麗的風(fēng)景線.某社會(huì)實(shí)踐活動(dòng)小
組為了了解“共享單車”的使用情況,對本校教師在3月6日至3月10日使用單車的情況進(jìn)行了問卷調(diào)查,
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖的一部分:
請根據(jù)以上信息解答下列問題:
(1)3月7日使用“共享單車”的教師人數(shù)為人,并請補(bǔ)全條形統(tǒng)計(jì)圖;
(2)不同品牌的“共享單車”各具特色,社會(huì)實(shí)踐活動(dòng)小組針對有過使用“共享單車”經(jīng)歷的教師做了進(jìn)一步調(diào)查,每位教師都按要求選擇了一種自己喜歡的“共享單車”,統(tǒng)計(jì)結(jié)果如圖,其中喜歡的教師有36人,求喜歡的教師的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC 中,∠ACB=90°,∠ABC=30°,AC=2,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),點(diǎn)A、B的對應(yīng)點(diǎn)分別為A1、B1,當(dāng)點(diǎn)A1恰好落在AB上時(shí),弧BB1與點(diǎn)A1構(gòu)成的陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形中,,,是射線上的點(diǎn),連接,將沿直線翻折得.
(1)如圖①,點(diǎn)恰好在上,求證:∽;
(2)如圖②,點(diǎn)在矩形內(nèi),連接,若,求的面積;
(3)若以點(diǎn)、、為頂點(diǎn)的三角形是直角三角形,則的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com