已知⊙O1與⊙O2的半徑r1、r2分別是方程x2-6x+8=0的兩實根,若⊙O1與⊙O2的圓心距d=5,則⊙O1與⊙O2的位置關(guān)系 .
【答案】分析:由⊙O1與⊙O2的半徑r1、r2分別是方程x2-6x+8=0的兩實根,解方程即可求得⊙O1與⊙O2的半徑r1、r2的值,又由⊙O1與⊙O2的圓心距d=5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可得出兩圓位置關(guān)系.
解答:解:∵x2-6x+8=0,
∴(x-4)(x-2)=0,
解得:x=4或x=2,
∵⊙O1與⊙O2的半徑r1、r2分別是方程x2-6x+8=0的兩實根,
∴r1=2,r2=4,r1+r2=6,r2-r1=2,
∵⊙O1與⊙O2的圓心距d=5,
∴⊙O1與⊙O2的位置關(guān)系是相交.
故答案為:相交.
點評:此題考查了圓與圓的位置關(guān)系與一元二次方程的解法.注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系是解此題的關(guān)鍵.