【題目】如圖,方格紙上每個小正方形的邊長均為1個單位長度,點A、B都在格點上(兩條網(wǎng)格線的交點叫格點).

1)將線段AB向上平移兩個單位長度,點A的對應點為點A1,點B的對應點為點B1,請畫出平移后的線段A1B1;

2)將線段A1B1繞點A1按逆時針方向旋轉(zhuǎn)90°,點B1的對應點為點B2,請畫出旋轉(zhuǎn)后的線段A1B2;

3)連接AB2、BB2,求△ABB2的面積.

【答案】(1)詳見解析;(2)詳見解析;(3)6.

【解析】

(1)(2)根據(jù)題意畫出圖形即可;(3)用割補法先求出△ABB2所在的正方形B1B2CD的面積,再減去△ACB2、△ABD和△BB1B2的面積即可得出答案.

解:(1)線段A1B1如圖所示;

(2)線段A1B2如圖所示;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABO的直徑,ACO的弦,過O點作OFABO于點D,交AC于點E,交BC的延長線于點F,點GEF的中點,連接CG

(1)判斷CGO的位置關系,并說明理由;

(2)求證:2OB2BCBF;

(3)如圖2,當∠DCE2FCE3,DG2.5時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在RtABC中,∠B90°,AC60cm,∠A60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設點D,E運動的時間是ts0t≤15),過點DDFBC于點F,連接DE,EF,若四邊形AEFD為菱形,則t的值為( )

A.20B.15C.10D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,BC3BD為對角線.點P從點B出發(fā),沿線段BA向點A運動,點Q從點D出發(fā),沿線段DB向點B運動,兩點同時出發(fā),速度都為每秒1個單位長度,當點P運動到A時,兩點都停止.設運動時間為t秒.

1)是否存在某一時刻t,使得PQAD?若存在,求出t的值;若不存在,說明理由.

2)設四邊形BPQC的面積為S,求St之間的函數(shù)關系式.

3)是否存在某一時刻t,使得S四邊形BPQCS矩形ABCD920?若存在,求出t的值;若不存在,則說明理由.

4)是否存在某一時刻t,使得PQCQ?若存在,求出t的值;若不存在,則說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,的直徑,是弦,點的中點,的延長線于

1)求證:的切線;

2)如圖2,作,交,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物y=ax2+bx+c(b<0)與軸只有一個公共點.

(1)若公共點坐標為(2,0),求a、c滿足的關系式;

(2)A為拋物線上的一定點,直線ly=kx+1k與拋物線交于點B、C兩點,直線BD垂直于直線y=1,垂足為點D.k0時,直線l與拋物線的一個交點在y軸上,且ABC為等腰直角三角形.

①求點A的坐標和拋物線的解析式;

②證明:對于每個給定的實數(shù)k,都有A、D、C三點共線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,給出下列結論:

b2=4ac;abc>0;a>c;4a﹣2b+c>0,其中正確的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了對甲,乙兩名同學進行學生會主席的競選考核、召開了一次競選答辯及民主測評會.由A,BC,DE五位教師評委對競選答辯進行評分,并選出20名學生代表參加民主投票.競選答辯的結果如下表所示:

評委

得分

選手

A

B

C

D

E

92

88

90

94

96

84

86

90

93

91

民主投票的結果為:甲8票,乙12票.

根據(jù)以上信息解答下列問題:

1)甲,乙兩人的競選答辯得分分別是多少?

2)如果綜合得分=競選答辯得分+民主投票得分,那么,甲,乙兩人誰當選學生會主席?

3)如果綜合得分=競選答辯得分民主投票得分,那么,當時,甲,乙兩人誰當選學生會主席?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于⊙O,BAD=90°,點EBC的延長線上,且∠DEC=BAC.

(1)求證:DE是⊙O的切線;

(2)若ACDE,當AB=8,CE=2時,求AC的長.

查看答案和解析>>

同步練習冊答案