如圖,在Rt△ABC中,AD是斜邊BC上的高,△ABE、△ACF是等邊三角形.
(1)試說明:△ABD∽△CAD;
(2)連接DE、DF、EF,判斷△DEF的形狀,并說明理由.
分析:(1)根據(jù)有兩對角相等的兩個三角形相似,證明即可;
(2)△DEF為直角三角形,首先根據(jù)等邊三角形的性質(zhì)證明∠EAD=∠DCF,由(1)可知
AB
CA
=
AD
CD
,即
AE
CF
=
AD
CD
,所以△AED~△CFD,利用相似三角形的性質(zhì)證明∠EDF=90°即可.
解答:(1)證明:∵在RT△ABC中,AD為高
∴∠ADB=∠ADC=90°,
∴∠1+∠2=∠2+∠3=90°,
∴∠1=∠3,
∴△ABD~△CAD;                  

(2)△DEF為直角三角形.理由如下:
證明∵△ABE與△ACF為正三角形,
∴∠BAE=∠ACF=60°,
∵∠1=∠3,
∴∠BAE+∠1=∠ACF+∠3,
即∠EAD=∠DCF,
∵△ABD~△CAD,
AB
CA
=
AD
CD
,
即 
AE
CF
=
AD
CD

∴△AED~△CFD,
∴∠4=∠5,
∵∠5+∠6=90°,
∴∠4+∠6=90°,
即∠EDF=90°,
∴△DEF為直角三角形.
點評:本題考查了等邊三角形的性質(zhì)、相似三角形的判定和性質(zhì)以及直角三角形的判定,題目的綜合性不小,難度中等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當(dāng)點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設(shè)點P的運動時間為t(s).
(1)當(dāng)點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點N落在AB邊上時,求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時,設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊答案