如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于( )

A.25°
B.30°
C.45°
D.60°
【答案】分析:先根據(jù)圖形折疊的性質(zhì)得出BC=CE,再由直角三角形斜邊的中線等于斜邊的一半即可得出CE=AE,進而可判斷出△BEC是等邊三角形,由等邊三角形的性質(zhì)及直角三角形兩銳角互補的性質(zhì)即可得出結論.
解答:解:△ABC沿CD折疊B與E重合,
則BC=CE,
∵E為AB中點,△ABC是直角三角形,
∴CE=BE=AE,
∴△BEC是等邊三角形.
∴∠B=60°,
∴∠A=30°,
故選B.
點評:考查直角三角形的性質(zhì),等邊三角形的判定及圖形折疊等知識的綜合應用能力及推理能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

5、如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖,CD是Rt△ABC斜邊AB上的高,將△BCD沿CD折疊,B點恰好落在AB的中點E處,則∠A等于
30
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊上的高線,若sinA=
3
3
,BD=1,則AD=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊上的高.若AB=5,AC=3,則tan∠BCD為( 。
A、
4
3
B、
3
4
C、
4
5
D、
3
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,CD是Rt△ABC斜邊AB上的高,直角邊AC=2
3
,現(xiàn)將△BCD沿CD折疊,B點恰好落在AB的中點E處,則陰影部分的面積等于
 

查看答案和解析>>

同步練習冊答案