【題目】我國很多城市水資源缺乏,為了加強居民的節(jié)水意識,某市制定了每月用水4噸以內(nèi)(包括4噸)和用水4噸以上兩種收費標準(收費標準:每噸水的價格),某用戶每月應(yīng)交水費y(元)是用水量x(噸)的函數(shù),其函數(shù)圖象如圖所示.
(1)分別求出當(dāng)0≤x≤4、x>4時函數(shù)的解析式;
(2)當(dāng)0≤x≤4、x>4時,每噸水的價格分別是多少?
(3)若某用戶該月交水費12.8元,求該戶用了多少噸水.
【答案】(1)y=1.2x(0≤x≤4),y=1.6x-1.6(x>4);(2)1.2元/噸;1.6元/噸(3) 9噸.
【解析】試題分析:(1)仔細觀察圖象,便可寫出函數(shù)在不同范圍內(nèi)的函數(shù)解析式;
(2)根據(jù)在不同范圍內(nèi)的函數(shù)的解析式可知,在0﹣4噸范圍內(nèi),每噸1.2元,當(dāng)x>4時,每噸水1.6元;
(3)根據(jù)已知條件可知:該用戶的交水費范圍屬于x>4的范圍,代入解析式即可得到答案.
試題解析:解:(1)當(dāng)0≤x≤4時,設(shè)y=k1x,把點(4,4.8)代入y=k1x得k1=1.2,得y=1.2x;
當(dāng)x>4時,設(shè)y=k2x+b,把點(4,4.8)和(6,8)代入y=k2x+b得k2=1.6,b=﹣1.6,
得y=1.6x﹣1.6;
(2)根據(jù)(1)中得到的函數(shù)的解析式可知:
當(dāng)0≤x≤4時,每噸水1.2元;
當(dāng)x>4時,當(dāng)x=5,1.6x﹣1.6=6.4,當(dāng)x=4,y=4.8,則每噸水1.6元;
(3)把y=12.8代入y=1.6x﹣1.6中得:x=9.
答:他用了9噸水.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程:x2﹣4x+2=0,下列配方正確的是( )
A.(x﹣2)2=2
B.(x+2)2=2
C.(x﹣2)2=﹣2
D.(x﹣2)2=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(x-y)2·(x-y)3·(y-x)2·(y-x)3;
(2)(a-b-c)·(b+c-a)2·(c-a+b)3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級學(xué)生小聰和小明完成了數(shù)學(xué)實驗《鐘面上的數(shù)學(xué)》之后,自制了一個模擬鐘面,如圖所示,O為模擬鐘面圓心,M、O、N在一條直線上,指針OA、OB分別從OM、ON出發(fā)繞點O轉(zhuǎn)動,OA運動速度為每秒15°,OB運動速度為每秒5°,當(dāng)一根指針與起始位置重合時,運動停止,設(shè)轉(zhuǎn)動的時間為t秒,請你試著解決他們提出的下列問題:
(1)若OA順時針轉(zhuǎn)動,OB逆時針轉(zhuǎn)動,t=秒時,OA與OB第一次重合;
(2)若它們同時順時針轉(zhuǎn)動,
①當(dāng) t=2秒時,∠AOB=°;
②當(dāng)t為何值時,OA與OB第一次重合?
③當(dāng)t為何值時,∠AOB=30°?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(-3,﹣2)兩點.
(1)求m的值;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點, 且y1>y2,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知不等式組 的整數(shù)解為1、2、3,如果把適合這個不等式組的整數(shù)a、b組成有序數(shù)對(a,b),那么對應(yīng)在平面直角坐標系上的點共有的個數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我校的北大門是由相同菱形框架組成的伸縮電動推拉門,如圖是大門關(guān)閉時的示意圖,此時 菱形的邊長為0.5m,銳角都是50°.求大門的寬(結(jié)果精確到0.01,參考數(shù)據(jù):sin25°≈0.422 6,cos25°≈0.906 3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB邊的垂直平分線l交BC于點D,AC邊的垂直平分線l2交BC于點E,l與 l2相交于點O,連接AD,AE,△ADE的為6cm.
(1)求BC的長;
(2)分別連接OA,OB,OC,若△OBC的周長為16cm,求OA的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com