東方商場(chǎng)購(gòu)進(jìn)一批單價(jià)為20元的日用品,銷售一段時(shí)間后,經(jīng)調(diào)查發(fā)現(xiàn),若按每件24元的價(jià)格銷售時(shí),每月能賣36件;若按每件29元的價(jià)格銷售時(shí),每月能賣21件,假定每月銷售件數(shù)y(件)與價(jià)格x(元/件)之間滿足關(guān)系一次函數(shù).
(1)試求y與x的函數(shù)關(guān)系式;
(2)為了使每月獲得利潤(rùn)為144元,問(wèn)商品應(yīng)定為每件多少元?
(3)為了獲得了最大的利潤(rùn),商品應(yīng)定為每件多少元?

(1)y=-3x+108;(2)24元或36元;(3)28元.

解析試題分析:(1)把x=24,y=36;x=29,y=21分別代入y=kx+b,利用待定系數(shù)法即可求解;
(2)寫出利潤(rùn)與售價(jià)x的函數(shù)關(guān)系式,當(dāng)利潤(rùn)是144元時(shí),就得到關(guān)于x的方程,從而求解;
(3)按照等量關(guān)系“每月獲得的利潤(rùn)=(銷售價(jià)格-進(jìn)價(jià))×銷售件數(shù)”列出二次函數(shù),并求得最值.
試題解析::(1)根據(jù)題意得:,解得:
則y與x之間的函數(shù)關(guān)系式為:y=-3x+108.
(2)設(shè)利潤(rùn)M,則M與x的函數(shù)關(guān)系式是:M=(-3x+108)(x-20).
即M=-3x2+168x-2160
當(dāng)M=144時(shí),即-30x2+1440x-15360=144,
解方程得:x1=24,x2=36.
即為了獲得1920元的利潤(rùn),商品價(jià)格每件應(yīng)定為24元或36元.
(3)每天獲得的利潤(rùn)為:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192.
故當(dāng)銷售價(jià)定為28元時(shí),每天獲得的利潤(rùn)最大.
考點(diǎn): 1.二次函數(shù)的應(yīng)用;2.待定系數(shù)法求一次函數(shù)解析式;3.一次函數(shù)的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某區(qū)政府大力扶持大學(xué)生創(chuàng)業(yè).李剛在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈.銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=-10x+500.
(1)設(shè)李剛每月獲得利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為每臺(tái)多少元時(shí),每月可獲得最大利潤(rùn)?
(2)如果李剛想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)根據(jù)物價(jià)部門規(guī)定,這種護(hù)眼臺(tái)燈的銷售單價(jià)不得高于32元,如果李剛想要每月獲得的利潤(rùn)不低于2000元,那么他每月的成本最少需要多少元?(成本=進(jìn)價(jià)×銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖1,在平面直角坐標(biāo)系中,有一矩形ABCD,其三個(gè)頂點(diǎn)的坐標(biāo)分別為A(2,0)、B(8,0)、C(8,3).將直線l:y=-3x-3以每秒3個(gè)單位的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t=_________時(shí),直線l經(jīng)過(guò)點(diǎn)A.(直接填寫答案)
(2)設(shè)直線l掃過(guò)矩形ABCD的面積為S,試求S>0時(shí)S與t的函數(shù)關(guān)系式.
(3)在第一象限有一半徑為3、且與兩坐標(biāo)軸恰好都相切的⊙M,在直線l出發(fā)的同時(shí),⊙M以每秒2個(gè)單位的速度向右運(yùn)動(dòng),如圖2所示,則當(dāng)t為何值時(shí),直線l與⊙M相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=x2-2x-3的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與y軸交于點(diǎn)C,頂點(diǎn)為D.

(1)求點(diǎn)A、B、C、D的坐標(biāo),并在下面直角坐標(biāo)系中畫(huà)出該二次函數(shù)的大致圖象;
(2)說(shuō)出拋物線y=x2-2x-3可由拋物線y=x2如何平移得到?
(3)求四邊形OCDB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

以直線為對(duì)稱軸的拋物線軸交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為.
(1)求點(diǎn)B的坐標(biāo);
(2)設(shè)點(diǎn)M、N在拋物線線上,且,試比較的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線AB交x軸于點(diǎn)B,交y軸于點(diǎn)A(0,4),直線DM⊥x軸正半軸于點(diǎn)M,交線段AB于點(diǎn)C,DM=6,連接DA,∠DAC=90°,AD:AB=1:2.

(1)求點(diǎn)D的坐標(biāo);
(2)求經(jīng)過(guò)O、D、B三點(diǎn)的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)經(jīng)營(yíng)某種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會(huì)少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x > 40),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷售量y件和銷售該品牌玩具獲得利潤(rùn)w元,并把結(jié)果填寫在表格中:

銷售單價(jià)(元)
x
銷售量y(件)
 
銷售玩具獲得利潤(rùn)w(元)
 
(2)在(1)條件下,若商場(chǎng)獲得了10000元銷售利潤(rùn),求該玩具銷售單價(jià)x應(yīng)定為多少元?
(3)在(1)條件下,若玩具廠規(guī)定該品牌玩具銷售單價(jià)不低于44元,且商場(chǎng)要完成不少于540件的銷售任務(wù),求商場(chǎng)銷售該品牌玩具獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,用長(zhǎng)為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計(jì)).

(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長(zhǎng)和寬,才能使得窗戶的透光面積最大?并求出此時(shí)的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知:二次函數(shù)的圖象開(kāi)口向上,并且經(jīng)過(guò)原點(diǎn).
(1)求的值;
(2)用配方法求出這個(gè)二次函數(shù)圖象的頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案